MIT Latest News

Subscribe to MIT Latest News feed
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 21 hours 41 min ago

A new advising neighborhood takes shape along the Infinite Corridor

Tue, 10/21/2025 - 1:30pm

On any given day, MIT’s famed 825-foot Infinite Corridor serves as a busy, buzzing pedestrian highway, offering campus commuters a quick, if congested, route from point A to B. With the possible exception of MIT Henge twice a year, it doesn’t exactly invite lingering.

Thanks to a recent renovation on the first floor of Building 11, the former location of Student Financial Services, there’s now a compelling reason for students to step off the busy throughfare and pause for conversation or respite.

Dubbed by one onlooker as “the spaceport,” the area has been transformed into an airy, multi-functional hub. Nestled inside is the Undergraduate Advising Center (UAC), which launched in 2023 to provide holistic support for students’ personal and academic growth by providing individualized advising for all four years, offering guidance about and connections to MIT resources, and partnering with faculty and departments to ensure a comprehensive advising experience.

Students can now find another key service conveniently located close by: Career Advising and Professional Development has moved into renovated office suites just down the hall, in Building 7.

“It’s just stunning!” marvels Diep Luu, senior associate dean and director of the UAC. “You can’t help but notice the contrast between the historic architecture and the contemporary design. The space is filled with natural light thanks to the floor-to-ceiling windows, and it makes the environment both energizing and comfortable.”

Designed by Merge Architects, the 5,000 square-foot space opens off the Infinite with several informal public spaces for students and community members. These include a series of soaring, vaulted booths with a variety of tables and seating to support multiple kinds of socialization and/or work, a cozy lounge lined with pi wallpaper (carried out to 10,638 digits after 3.14), and the “social stairs” for informal gatherings and workshops. Beyond that, glass doors lead to the UAC office space, which features open workstations, private advising rooms, and conference rooms with Zoom capability.

“We wanted to incorporate as many different kinds of spaces to accommodate as many different kinds of interactions as we could,” explains Kate Trimble, senior associate dean and chief of staff of the Division of Graduate and Undergraduate Education (GUE), who helped guide the renovation project. “After all, the UAC will support all undergraduate students for their entire four-year MIT journey, through a wide variety of experiences, challenges, and celebrations.”

Homing in on the  “Boardwalk or Park Place of MIT real estate”

The vision for the new district began to percolate in 2022. At the time, GUE (then known as the Office of the Vice Chancellor, or OVC) was focusing on two separate, key priorities: reconfiguring office space in a post-pandemic, flex-work world; and creating a new undergraduate advising center, in accordance with one of the Task Force 2021 recommendations.

A faculty and staff working group gathered information and ideas from offices and programs that had already implemented “flex-space” strategies, such as Human Resources, IS&T, and the MIT Innovation Headquarters. In thinking about an advising center of the size and scope envisioned, Trimble notes, “we quickly zeroed in on the Building 11 space. It’s such a prominent location. Former Vice Chancellor (and current Vice President for Research) Ian A. Waitz referred to it as the “Boardwalk or Park Place of MIT real estate. And if you’re thinking about a center that’s going to serve all undergraduates, you really want it to be convenient and centrally located — and boy, that’s a perfect space.”

As plans were made to relocate Student Financial Services to a new home in Building E17, the renovation team engaged undergraduate students and advising staff in the design process through a series of charrette-style workshops and focus groups. Students shared feedback about spaces on campus where they felt most comfortable, as well as those they disliked. From staff, the team learned which design elements would make the space as functional as possible, allowing for the variety of interactions they typically have with students.

The team selected Merge Architects for the project, Trimble says, because “they understood that we were not looking to build something that was an architectural temple, but rather a functional and fun space that meets the needs of our students and staff. They’ve been creative and responsive partners.” She also credits the MIT Campus Construction group and the Office of Campus Planning for their crucial role in the renovation. “I can’t say enough good things about them. They’ve been superb guides through a long and complicated process.”

A more student-centric Infinite Corridor

Construction wrapped up in late summer, and the UAC held an open house for students on Registration Day, Sept. 3. It buzzed with activity as students admired the space, chatted with UAC staff, took photos, and met the office mascot, Winni, a friendly chocolate Labrador retriever.

“Students have been amazed by the transformation,” says Luu. “We wanted a space that encourages community and collaboration, one that feels alive and dynamic, and the early feedback suggests that’s exactly what’s happening,” Luu explains. “It also gives us a chance to better connect students not only with what the UAC offers, but also with support across the Institute.

“Last year, the UAC offices were behind these two wooden doors in the Infinite Corridor and you had to know that they were there to get to them,” says junior Caleb Mathewos, who has been a UAC orientation leader and captain over the past two years. “The space is very inviting now. I’ve seen people sitting there and working, or just relaxing between classes. I see my friends every now and then, and I’ll stop by and chat with them. Because it’s so much more open, it makes the UAC feel a lot more accessible to students.”

Senior Calvin Macatantan, who’s been involved with the UAC’s First Generation/Low Income Program since his first year and served as an associate advisor and orientation leader, thinks the new space will make it easier for students — especially first years — to find what they need to navigate at MIT. “Before, resources felt scattered across different parts of the Infinite, even though they had similar missions of advising and supporting students. It's nice that there’s a central, welcoming space where those supports connect, and I think that will make a big difference in how students experience MIT.”

The transformation adds significantly to a trend toward creating more student-centric spaces along the Infinite. In the past few years, MIT has added two new study lounges in Building 3, the DEN and the LODGE, and the Department of Materials Science and Engineering built the DMSE Breakerspace in Building 4. This fall, another office suite along the Infinite will be remodeled into a new tutoring hub.

"It’s wonderful to see the UAC space and the whole advising ‘neighborhood,’ if you will, come to fruition,” says Vice Chancellor for Graduate and Undergraduate Education David L. Darmofal. “The need to strengthen undergraduate advising and the opportunity to do so through an Institute advising hub was an outcome of the Task Force 2021 effort, and it’s taken years of thoughtful reflection by many stakeholders to lay the foundation for such a significant sea change in advising. This space is a tangible, visible commitment to putting students first.”

MIT Maritime Consortium releases “Nuclear Ship Safety Handbook”

Mon, 10/20/2025 - 4:45pm

Commercial shipping accounts for 3 percent of all greenhouse gas emissions globally. As the sector sets climate goals and chases a carbon-free future, nuclear power — long used as a source for military vessels — presents an enticing solution. To date, however, there has been no clear, unified public document available to guide design safety for certain components of civilian nuclear ships. A new “Nuclear Ship Safety Handbook” by the MIT Maritime Consortium aims to change that and set the standard for safe maritime nuclear propulsion.

“This handbook is a critical tool in efforts to support the adoption of nuclear in the maritime industry,” explains Themis Sapsis, the William I. Koch Professor of Mechanical Engineering at MIT, director of the MIT Center for Ocean Engineering, and co-director of the MIT Maritime Consortium. “The goal is to provide a strong basis for initial safety on key areas that require nuclear and maritime regulatory research and development in the coming years to prepare for nuclear propulsion in the maritime industry.”

Using research data and standards, combined with operational experiences during civilian maritime nuclear operations, the handbook provides unique insights into potential issues and resolutions in the design efficacy of maritime nuclear operations, a topic of growing importance on the national and international stage. 

“Right now, the nuclear-maritime policies that exist are outdated and often tied only to specific technologies, like pressurized water reactors,” says Jose Izurieta, a graduate student in the Department of Mechanical Engineering (MechE) Naval Construction and Engineering (2N) Program, and one of the handbook authors. “With the recent U.K.-U.S. Technology Prosperity Deal now including civil maritime nuclear applications, I hope the handbook can serve as a foundation for creating a clear, modern regulatory framework for nuclear-powered commercial ships.”

The recent memorandum of understanding signed by the U.S. and U.K calls for the exploration of “novel applications of advanced nuclear energy, including civil maritime applications,” and for the parties to play “a leading role informing the establishment of international standards, potential establishment of a maritime shipping corridor between the Participants’ territories, and strengthening energy resilience for the Participants’ defense facilities.”

“The U.S.-U.K. nuclear shipping corridor offers a great opportunity to collaborate with legislators on establishing the critical framework that will enable the United States to invest on nuclear-powered merchant vessels — an achievement that will reestablish America in the shipbuilding space,” says Fotini Christia, the Ford International Professor of the Social Sciences, director of the Institute for Data, Systems, and Society (IDSS), director of the MIT Sociotechnical Systems Research Center, and co-director of the MIT Maritime Consortium.

“With over 30 nations now building or planning their first reactors, nuclear energy’s global acceptance is unprecedented — and that momentum is key to aligning safety rules across borders for nuclear-powered ships and the respective ports,” says Koroush Shirvan, the Atlantic Richfield Career Development Professor in Energy Studies at MIT and director of the Reactor Technology Course for Utility Executives.

The handbook, which is divided into chapters in areas involving the overlapping nuclear and maritime safety design decisions that will be encountered by engineers, is careful to balance technical and practical guidance with policy considerations.

Commander Christopher MacLean, MIT associate professor of the practice in mechanical engineering, naval construction, and engineering, says the handbook will significantly benefit the entire maritime community, specifically naval architects and marine engineers, by providing standardized guidelines for design and operation specific to nuclear powered commercial vessels.

“This will assist in enhancing safety protocols, improve risk assessments, and ensure consistent compliance with international regulations,” MacLean says. “This will also help foster collaboration amongst engineers and regulators. Overall, this will further strengthen the reliability, sustainability, and public trust in nuclear-powered maritime systems.”

Anthony Valiaveedu, the handbook’s lead author, and co-author Nat Edmonds, are both students in the MIT Master’s Program in Technology and Policy (TPP) within the IDSS. The pair are also co-authors of a paper published in Science Policy Review earlier this year that offered structured advice on the development of nuclear regulatory policies.

“It is important for safety and technology to go hand-in-hand,” Valiaveedu explains. “What we have done is provide a risk-informed process to begin these discussions for engineers and policymakers.”

“Ultimately, I hope this framework can be used to build strong bilateral agreements between nations that will allow nuclear propulsion to thrive,” says fellow co-author Izurieta.

Impact on industry

“Maritime designers needed a source of information to improve their ability to understand and design the reactor primary components, and development of the 'Nuclear Ship Safety Handbook' was a good step to bridge this knowledge gap,” says Christopher J. Wiernicki, American Bureau of Shipping (ABS) chair and CEO. “For this reason, it is an important document for the industry.”

The ABS, which is the American classification society for the maritime industry, develops criteria and provides safety certification for all ocean-going vessels. ABS is among the founding members of the MIT Maritime Consortium. Capital Clean Energy Carriers Corp., HD Korea Shipbuilding and Offshore Engineering, and Delos Navigation Ltd. are also consortium founding members. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.

“As we consider a net-zero framework for the shipping industry, nuclear propulsion represents a potential solution. Careful investigation remains the priority, with safety and regulatory standards at the forefront,” says Jerry Kalogiratos, CEO of Capital Clean Energy Carriers Corp. “As first movers, we are exploring all options. This handbook lays the technical foundation for the development of nuclear-powered commercial vessels.”

Sangmin Park, senior vice president at HD Korea Shipbuilding and Offshore Engineering, says “The 'Nuclear Ship Safety Handbook' marks a groundbreaking milestone that bridges shipbuilding excellence and nuclear safety. It drives global collaboration between industry and academia, and paves the way for the safe advancement of the nuclear maritime era.”

Maritime at MIT

MIT has been a leading center of ship research and design for over a century, with work at the Institute today representing significant advancements in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. Maritime Consortium projects, including the handbook, reflect national priorities aimed at revitalizing the U.S. shipbuilding and commercial maritime industries.

The MIT Maritime Consortium, which launched in 2024, brings together MIT and maritime industry leaders to explore data-powered strategies to reduce harmful emissions, optimize vessel operations, and support economic priorities.

“One of our most important efforts is the development of technologies, policies, and regulations to make nuclear propulsion for commercial ships a reality,” says Sapsis. “Over the last year, we have put together an interdisciplinary team with faculty and students from across the Institute. One of the outcomes of this effort is this very detailed document providing detailed guidance on how such effort should be implemented safely.”

Handbook contributors come from multiple disciplines and MIT departments, labs, and research centers, including the Center for Ocean Engineering, IDSS, MechE’s Course 2N Program, the MIT Technology and Policy Program, and the Department of Nuclear Science and Engineering.

MIT faculty members and research advisors on the project include Sapsis; Christia; Shirvan; MacLean; Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering, director, Center for Advanced Nuclear Energy Systems, and director of science and technology for the Nuclear Reactor Laboratory; and Captain Andrew Gillespy, professor of the practice and director of the Naval Construction and Engineering (2N) Program.

“Proving the viability of nuclear propulsion for civilian ships will entail getting the technologies, the economics and the regulations right,” says Buongiorno. “This handbook is a meaningful initial contribution to the development of a sound regulatory framework.”

“We were lucky to have a team of students and knowledgeable professors from so many fields,” says Edmonds. “Before even beginning the outline of the handbook, we did significant archival and history research to understand the existing regulations and overarching story of nuclear ships. Some of the most relevant documents we found were written before 1975, and many of them were stored in the bellows of the NS Savannah.”

The NS Savannah, which was built in the late 1950s as a demonstration project for the potential peacetime uses of nuclear energy, was the first nuclear-powered merchant ship. The Savannah was first launched on July 21, 1959, two years after the first nuclear-powered civilian vessel, the Soviet ice-breaker Lenin, and was retired in 1971.

Historical context for this project is important, because the reactor technologies envisioned for maritime propulsion today are quite different from the traditional pressurized water reactors used by the U.S. Navy. These new reactors are being developed not just in the maritime context, but also to power ports and data centers on land; they all use low-enriched uranium and are passively cooled. For the maritime industry, Sapsis says, “the technology is there, it’s safe, and it’s ready.”

The Nuclear Ship Safety Handbook is publicly available on the MIT Maritime Consortium website and from the MIT Libraries. 

Solar energy startup Active Surfaces wins inaugural PITCH.nano competition

Mon, 10/20/2025 - 4:10pm

The inaugural PITCH.nano competition, hosted by MIT.nano’s hard technology accelerator START.nano, provided a platform for early-stage startups to present their innovations to MIT and Boston’s hard-tech startup ecosystem.

The grand prize winner was Active Surfaces, a startup that is generating renewable energy exactly where it is going to be used through lightweight, flexible solar cells. Active Surfaces says its ultralight, peel-and-stick panels will reimagine how we deploy photovoltaics in the built environment.

Shiv Bhakta MBA ’24, SM ’24, CEO and co-founder, delivered the winning presentation to an audience of entrepreneurs, investors, startup incubators, and industry partners at PITCH.nano on Sept. 30. Active Surfaces received the grand prize of 25,000 nanoBucks — equivalent to $25,000 that can be spent at MIT.nano facilities.

Why has MIT.nano chosen to embrace startup activity as much as we do? asked Vladimir Bulović, MIT.nano faculty director, at the start of PITCH.nano. “We need to make sure that entrepreneurs can be born out of MIT and can take the next technical ideas developed in the lab out into the market, so they can make the next millions of jobs that the world needs.”

The journey of a hard-tech entrepreneur takes at least 10 years and 100 million dollars, explained Bulović. By linking open tool facilities to startup needs, MIT.nano can make those first few years a little bit easier, bringing more startups to the scale-up stage.

“Getting VCs [venture capitalists] to invest in hard tech is challenging,” explained Joyce Wu SM ’00, PhD ’07, START.nano program manager. “Through START.nano, we provide discounted access to MIT.nano’s cleanrooms, characterization tools, and laboratories for startups to build their prototypes and attract investment earlier and with reduced spend. Our goal is to support the translation of fundamental research to real-world solutions in hard tech.”

In addition to discounted access to tools, START.nano helps early-stage companies become part of the MIT and Cambridge innovation network. PITCH.nano, inspired by the MIT 100K Competition, was launched as a new opportunity this year to introduce these hard-tech ventures to the investor and industry community. Twelve startups delivered presentations that were evaluated by a panel of four judges who are, themselves, venture capitalists and startup founders.

“It is amazing to see the quality, diversity, and ingenuity of this inspiring group of startups,” said judge Brendan Smith PhD ’18, CEO of SiTration, a company that was part of the inaugural START.nano cohort. “Together, these founders are demonstrating the power of fundamental hard-tech innovation to solve the world’s greatest challenges, in a way that is both scalable and profitable.”

Startups who presented at PITCH.nano spanned a wide range of focus areas. In the fields of climate, energy, and materials, the audience heard from Addis Energy, Copernic Catalysts, Daqus Energy, VioNano Innovations, Active Surfaces, and Metal Fuels; in life sciences, Acorn Genetics, Advanced Silicon Group, and BioSens8; and in quantum and photonics, Qunett, nOhm Devices, and Brightlight Photonics. The common thread for these companies: They are all using MIT.nano to advance their innovations.

“MIT.nano has been instrumental in compressing our time to market, especially as a company building a novel, physical product,” said Bhakta. “Access to world-class characterization tools — normally out of reach for startups — lets us validate scale-up much faster. The START.nano community accelerates problem-solving, and the nanoBucks award is directly supporting the development of our next prototypes headed to pilot.”

In addition to the grand prize, a 5,000 nanoBucks audience choice award went to Advanced Silicon Group, a startup that is developing a next-generation biosensor to improve testing in pharma and health tech.

Now in its fifth year, START.nano has supported 40 companies spanning a diverse set of market areas — life sciences, clean tech, semiconductors, photonics, quantum, materials, and software. Fourteen START.nano companies have graduated from the program, proving that START.nano is indeed succeeding in its mission to help early-stage ventures advance from prototype to manufacturing. “I believe MIT.nano has a fantastic opportunity here,” said judge Davide Marini, PhD ’03, co-founder and CEO of Inkbit, “to create the leading incubator for hard tech entrepreneurs worldwide.”

START.nano accepts applications on a monthly basis. The program is made possible through the generous support of FEMSA.

MIT Global Seed Funds catalyze research in over 20 countries

Mon, 10/20/2025 - 4:00pm

Since launching in 2008, the MIT Global Seed Funds (GSF) program has awarded roughly $30 million to more than 1,300 high-impact faculty research projects across the world, spurring consequential collaborations on topics that include swine-fever vaccines, deforestation of the Amazon, the impact of “coral mucus” on the Japanese island of Okinawa, and the creation of an AI-driven STEM-education lab within Nigeria’s oldest university.

Administered by the MIT Center for International Studies (CIS) and open to MIT faculty and principal investigators, GSF boasts a unique funding structure consisting of both a general fund for unrestricted geographical use and more than 20 different specific funds for individual universities, regions, and countries.

GSF projects often tackle critical challenges that require international solutions, culminating in patents, policy changes, and published papers in journals such as Nature and Science. Some faculty-led projects from this year include Professor Hugh Herr’s modular crutches for people with disabilities in Sierra Leone, Research Scientist Paolo Santi’s large-language models to predict energy consumption in grocery stores, and Professor Ernest Fraenkel’s development of mRNA therapies for the neurodegenerative disease amyotrophic lateral sclerosis (ALS).

GSF Assistant Director Justin Leahey, who is managing director of the MIT-Germany and MIT-Switzerland programs, says that GSF has expanded exponentially over the years, including most recently into the Czech Republic, Norway, Slovakia, and — starting in fall 2025 — Hungary. This year there were a grand total of roughly 300 research proposals submitted for consideration, with many of the accepted proposals including the active participation of students at both the graduate and undergraduate level.

Central to GSF’s work is “reciprocal exchange” — the concept of collaborators in and out of MIT sharing their work and exchanging ideas in an egalitarian way, rather than bringing a one-sided approach to different research challenges. Frequent collaborator Raffaella Gozzelino, a neurology researcher and principal investigator at NOVA Medical School in Portugal who works closely with Jacquin Niles, an MIT professor of biological engineering, says that research is more impactful “when specialized knowledge integrates local realities and reveals potential solutions to national challenges,” and views the spirit of reciprocal exchange as something that revolves around “sharing knowledge and co-creating solutions that empower one another and build bridges across borders.”

For Cindy Xie ’24, MCP ’25, her master’s thesis emerged from the first-ever GSF-supported research internship in Cape Verde, where she worked with Niles and Gozzelino to explore the impact of climate change on anemia in the country of 500,000 people, focusing specifically on its largest island of Santiago. Xie says that she was struck by the intertwined intersectional nature of the issues of nutrition, climate, and infection in Santiago, home to the nation’s capital city of Praia. For example, Xie and Gozzelino’s team found that respondents perceived a rise in costs of fresh produce over time, exacerbated by drought and unpredictable agricultural conditions, which in turn impacted existing nutritional deficiencies and increased residents’ susceptibility to mosquito-borne diseases.

“Though this multidisciplinary research lens is challenging in terms of actual project implementation, it was meaningful in that it generated insights and connections across fields that allow our research to be better contextualized within the experiences of the communities that it impacts,” Xie says.

Gozzelino says that it has been meaningful to witness how scientific research can transcend academic boundaries and generate real impact. She says that, by examining the effects of climate change on infectious diseases and nutrition in Cape Verde, the team will be able to build a framework that can directly inform public policy.

“Contributing to a project that underscores the importance of integrating scientific knowledge into decision-making will safeguard vulnerable populations and make them feel included in the society they belong,” Gozzelino says. “This collaboration has revealed the enormous potential of international partnerships to strengthen local research capacity and address global challenges.”

During her time in Cape Verde working with Xie and Gozzelino, Amulya Aluru ’23, MEng ’24 got to meet with 20 local officials and connect with new people in a wide range of roles across the country, helping her “recognize the power of interpersonal relationships and collaboration” in public health research. She says that the structure of the GSF grant gave her the unique experience of having mentors and coworkers in three different countries, spanning Cape Verde, the United States, and Portugal.

Aluru says that this kind of cross-pollination “enabled me to strengthen my research with different perspectives and challenged me to approach my work in a way that I’d never done before, with a more global mindset.”

Xie similarly expresses her deep appreciation for the long-term relationships she has built through the project and the linkages between Santiago and Boston, which itself is home to one of the world’s largest Cape Verdean diasporas. “As a student, this was a valuable experience to inform the approaches to collaboration that I would like to implement in my own future work,” Xie says.

More broadly, Gozzelino sees GSF grants like the Cape Verde one as being not simply a vehicle for financial support, but “a catalyst for turning partnerships into long-term impactful collaborations, demonstrating how global networks can aid the development of human capital.”

GSF’s long history of reaching across departments and borders has led to multiple meaningful academic collaborations that have since come to span continents — and decades. In 2015, Professor Jörn Dunkel — an applied mathematician at MIT — kicked off work on a data-sharing repository for bacterial biofilms with the interdisciplinary German microbiologist Knut Drescher, then a professor of biophysics at Philipps-Universität Marburg in Germany. Dunkel and Drescher have since co-authored more than 15 papers together in publications like Nature Physics and Science Advances alongside their teams of graduate students and postdocs, even with Drescher having moved locations and crossed country lines to Switzerland as a faculty member at the University of Basel’s Biozentrum Center for Molecular Life Sciences.

“Our collaboration often creates great synergy by combining my team’s experiments with the theory from Jörn’s team,” says Drescher. “It is a great joy to see his perspective on the experimental systems we are working on. He is able to really understand and engage with experimental biological data, identifying patterns in seemingly distant biological systems.”

In explaining the CIS initiative’s success, Leahey points to the synergistic, academically eclectic, cross-disciplinary nature of the program. “[GSF] is a research fund that doesn’t ‘fund research’ in the conventional sense,” he says. “It seeds early-stage collaboration and lets people explore.”

The MIT Global Seed Funds applications are now open, with a deadline of Dec. 16.

Alan Whitney, MIT Haystack Observatory radio astronomer who pioneered very long baseline interferometry, dies at 81

Mon, 10/20/2025 - 1:20pm

Alan Robert Whitney ’66, SM ’67, PhD ’74, a longtime research scientist at the MIT Haystack Observatory who also served its associate director and interim director, died on Sept. 28 at age 81.

Whitney was a key contributor to the accomplishments and reputation of Haystack Observatory, having led the development of innovative technologies to advance the powerful radio science technique of very long baseline interferometry (VLBI). He ascended to the rank of MIT principal research scientist, served for many years as associate director of the observatory, and in 2007–08 took the reins as interim director. In 2011, he was awarded an MIT Excellence award.

From an early age, Whitney displayed extraordinary talent. Raised in Wyoming, as a high schooler he won the state science fair in 1962 by building a satellite telemetry receiver, which he designed and built from transistors and other discrete components in a barn on his family’s dairy farm. He enrolled at MIT and completed a five-year master’s degree via a cooperative internship program with Bell Laboratories, subsequently earning his PhD in electrical engineering.

Haystack Director Phil Erickson says, “Alan’s personality and enthusiasm were infectious, and his work represented the best ideals of the Haystack and MIT research enterprise — innovative, curious, and exploring the frontiers of basic and applied science and technology.”

In the late 1960s, as part of his PhD work, he was heavily involved in the pioneering development of VLBI, an extraordinary technique that yielded direct measurements of continental drift and information on distant radio sources at unprecedented angular resolution. A landmark paper led by Whitney demonstrated the presence of apparent superluminal (faster than light) motion of radio sources, which was explained as highly relativistic motion aligned toward the Earth. He spent the rest of his long and productive career at Haystack, pushing forward VLBI technology to ever-greater heights and ever-more impactful scientific capabilities.

“Alan was a technology pillar, a stalwart builder and worldwide ambassador of Haystack, and a leading figure of the VLBI geodetic community who inspired generations of scientists and engineers,” says Pedro Elosegui, leader of the Haystack geodesy group. “He contributed fundamentally to the vision and design of the VLBI Geodetic Observing System, outlining a path to a next-generation VLBI system with unprecedented new capabilities to address emerging space geodesy science needs such as global sea-level rise.”

The early days of VLBI demanded heroic and grueling efforts, traveling the world with exotic devices in hand-carried luggage, mounting and dismounting thousands of magnetic tapes every couple of minutes for hours on end, troubleshooting complex and sensitive instrumentation, and writing highly specialized software for the mainframe computers of the day. Whitney was fully engaged on all these fronts. By the early 1980s, the Mark III recording and correlation systems, whose development was led by Whitney, were established as the state of the art in VLBI technology, and a standard around which the global VLBI community coalesced.

Whitney later led the transition to VLBI disk-based recording. Specialized and robust Mark V systems optimized for shipping logistics and handling were transferred to industry for commercialization, leading once again to widespread global adoption of Haystack-developed VLBI technology. Consistently across all these developments, Whitney identified and exploited the most relevant and practical emerging technologies for the Haystack VLBI mission in hardware, software, and computing infrastructure.

In the latter part of his career, Whitney continued to innovate, pushing the technical boundaries of VLBI. A key advance was the Mark 6 (Mk6) recording system, capable of yet faster recording, higher sensitivity, and more robustness. The Mk6 recorders’ essential capability allowed the creation of the Event Horizon Telescope, which famously yielded the first image of the shadow of a black hole. Mk6 recorders are now used to routinely record data roughly 100,000 times faster than the computer tapes used at the start of his career.

As a senior technical and scientific leader, Whitney provided broad leadership and consultation to Haystack, and worked on a number of projects outside of the VLBI world. He served as interim Haystack director from January 2007 until a permanent director was appointed in September 2008. He also engaged with the development project for the international Murchison Widefield Array (MWA) in Australia, focused on frontier research studying early universe development. Whitney assumed the role of MWA project director from 2008 until groups in Australia took over the construction phase of the project a few years later. Until his full retirement in 2012, Whitney continued to provide invaluable technical insights and support at Haystack, and was a trusted and wise counsel to the Haystack Director’s Office. In 2020, Whitney was a co-recipient of the 2020 Breakthrough Prize in Fundamental Physics awarded to the Event Horizon Telescope Collaboration.

Alan Whitney was a top-notch technologist with a broad perspective that allowed him to guide Haystack to decades of influential leadership in the development and refinement of the VLBI technique. His dedication at MIT to the observatory, its people, and its mission were a source of inspiration to many at Haystack and well beyond. He was widely admired for the clarity of his thought, the sharpness of his intellect, and his genial and friendly nature. His numerous local, national, and global colleagues will feel his absence.

School of Engineering welcomes new faculty in 2024-25

Fri, 10/17/2025 - 3:55pm

The MIT School of Engineering welcomes new faculty members across six of its academic units. This new cohort of faculty members, who have recently started their roles at MIT, conduct research across a diverse range of disciplines.

“We are thrilled to welcome these accomplished scholars to the School of Engineering,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor in the Department of Mechanical Engineering. “Each brings unique expertise across a wide range of fields and is advancing knowledge with real-world impact. They all share a deep commitment to research excellence and a passion for teaching and mentorship.”

Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) and the Institute for Data, Systems, and Society (IDSS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing.

The new engineering faculty include:

Masha Folk joined the Department of Aeronautics and Astronautics as an assistant professor in July 2024 and is currently the Charles Stark Draper Career Development Professor. Her research focuses on sustainable aerospace technology driven by a deep desire to accelerate carbon-neutral aviation. She previously worked as an aerodynamics specialist for Rolls-Royce. Folk received her BS in aerospace engineering from Ohio State University, her MS in aerospace engineering from Purdue University, and her PhD in energy, fluids, and turbomachinery from the University of Cambridge.

Sophia Henneberg joined the Department of Nuclear Science and Engineering (NSE) as an assistant professor in September. Her research focuses on developing, utilizing, and extending optimization tools to identify new, promising stellarator designs, which are a promising path toward fusion energy. Previously, she was the principal investigator of EUROfusion’s Stellarator Optimization Theory, Simulation, Validation, and Verification group. Henneberg received a BS in physics at the Goethe-Universität, an MA in physics at the University of Wisconsin at Madison, and a PhD in physics at the University of York.

Omar Khattab joined the Department of Electrical Engineering and Computer Science as an assistant professor in July. He is also affiliated with the Computer Science and Artificial Intelligence Laboratory (CSAIL). His research develops new algorithms and abstractions for declarative AI programming and for composing retrieval and reasoning. Khattab previously worked as a research scientist at Databricks. He received a BS in computer science from Carnegie Mellon University and a PhD in computer science from Stanford University.

Tania Lopez-Silva joined the Department of Materials Science and Engineering as an assistant professor in July. Her research focuses on supramolecular hydrogels — soft materials made from self-assembling molecules, primarily peptides. Previously, she served as a postdoc at the National Cancer Institute. Lopez-Silva earned her BS in chemistry from Tecnológico de Monterrey and her MA and PhD in chemistry from Rice University.

Ethan Peterson ’13 joined the Department of Nuclear Science and Engineering as an assistant professor in July 2024. His research focuses on improving radiation transport and transmutation methods for the design of fusion technologies, as well as whole-facility modeling for fusion power plants. Previously, he worked as a research scientist at MIT’s Plasma Science and Fusion Center. Peterson received his BS in nuclear engineering and physics from MIT and his PhD in plasma physics from the University of Wisconsin at Madison.

Dean Price joined the Department of Nuclear Science and Engineering as the Atlantic Richfield Career Development Professor in Energy Studies and an assistant professor in September. His work focuses on the simulation and control of advanced reactors, with expertise in uncertainty quantification, scientific machine learning, and artificial intelligence for nuclear applications. Previously, he was the Russell L. Heath Distinguished Postdoctoral Fellow at Idaho National Laboratory. He earned his BS in nuclear engineering from the University of Illinois and his PhD in nuclear engineering from the University of Michigan.

Daniel Varon joined the Department of Aeronautics and Astronautics as the Boeing Assistant Professor, holding an MIT Schwarzman College of Computing shared position with IDSS, in July. Varon’s research focuses on using satellite observations of atmospheric composition to better understand human impacts on the environment and identify opportunities to reduce them. Previously, he held a visiting postdoctoral fellowship at the Princeton School of Public and International Affairs. Varon earned a BS in physics and a BA in English literature from McGill University, and an MS in applied mathematics and PhD in atmospheric chemistry from Harvard University.

Raphael Zufferey joined the Department of Mechanical Engineering as an assistant professor in January. He studies bioinspired methods and unconventional designs to solve seamless aerial and aquatic locomotion for applications in ocean sciences. Zufferey previously worked as a Marie Curie postdoc at the École Polytechnique Fédérale de Lausanne (EPFL). He received his BA in micro-engineering and MS in robotics from EPFL and a PhD in robotics and aeronautics from Imperial College London.

The School of Engineering is also welcoming a number of faculty in the Department of EECS and the IDSS who hold shared positions with the MIT Schwarzman College of Computing and other departments. These include: Bailey Flanigan, Brian Hedden, Yunha Hwang, Benjamin Lindquist, Paris Smaragdis, Pu “Paul" Liang, Mariana Popescu, and Daniel Varon. For more information about these faculty members, read the Schwarzman College of Computing’s recent article.

Additionally, the School of Engineering has adopted the shared faculty search model to hire its first shared faculty member: Mark Rau. For more information, read the School of Humanities, Arts, and Social Sciences recent article.

MIT Schwarzman College of Computing welcomes 11 new faculty for 2025

Fri, 10/17/2025 - 3:45pm

The MIT Schwarzman College of Computing welcomes 11 new faculty members in core computing and shared positions to the MIT community. They bring varied backgrounds and expertise spanning sustainable design, satellite remote sensing, decision theory, and the development of new algorithms for declarative artificial intelligence programming, among others.

“I warmly welcome this talented group of new faculty members. Their work lies at the forefront of computing and its broader impact in the world,” says Dan Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.

College faculty include those with appointments in the Department of Electrical Engineering and Computer Science (EECS) or in the Institute for Data, Systems, and Society (IDSS), which report into both the MIT Schwarzman College of Computing and the School of Engineering. There are also several new faculty members in shared positions between the college and other MIT departments and sections, including Political Science, Linguistics and Philosophy, History, and Architecture.

“Thanks to another successful year of collaborative searches, we have hired six additional faculty in shared positions, bringing the total to 20,” says Huttenlocher.

The new shared faculty include:

Bailey Flanigan is an assistant professor in the Department of Political Science, holding an MIT Schwarzman College of Computing shared position with EECS. Her research combines tools from social choice theory, game theory, algorithms, statistics, and survey methods to advance political methodology and strengthen democratic participation. She is interested in sampling algorithms, opinion measurement, and the design of democratic innovations like deliberative minipublics and participatory budgeting. Flanigan was a postdoc at Harvard University’s Data Science Initiative, and she earned her PhD in computer science from Carnegie Mellon University.

Brian Hedden PhD ’12 is a professor in the Department of Linguistics and Philosophy, holding an MIT Schwarzman College of Computing shared position with EECS. His research focuses on how we ought to form beliefs and make decisions. His works span epistemology, decision theory, and ethics, including ethics of AI. He is the author of “Reasons without Persons: Rationality, Identity, and Time” (Oxford University Press, 2015) and articles on topics such as collective action problems, legal standards of proof, algorithmic fairness, and political polarization. Prior to joining MIT, he was a faculty member at the Australian National University and the University of Sydney, and a junior research fellow at Oxford University. He received his BA from Princeton University and his PhD from MIT, both in philosophy.

Yunha Hwang is an assistant professor in the Department of Biology, holding an MIT Schwarzman College of Computing shared position with EECS. She is also a member of the Laboratory for Information and Decision Systems. Her research interests span machine learning for sustainable biomanufacturing, microbial evolution, and open science. She serves as the co-founder and chief scientist at Tatta Bio, a scientific nonprofit dedicated to advancing genomic AI for biological discovery. She holds a BS in computer science from Stanford University and a PhD in biology from Harvard University.

Ben Lindquist is an assistant professor in the History Section, holding an MIT Schwarzman College of Computing shared position with EECS. Through a historical lens, his work observes the ways that computing has circulated with ideas of religion, emotion, and divergent thinking. His book, “The Feeling Machine” (University of Chicago Press, forthcoming), follows the history of synthetic speech to examine how emotion became a subject of computer science. He was a postdoc in the Science in Human Culture Program at Northwestern University and earned his PhD in history from Princeton University.

Mariana Popescu is an assistant professor in the Department of Architecture, holding an MIT Schwarzman College of Computing shared position with EECS. She is also a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). A computational architect and structural designer, Popescu has a strong interest and experience in innovative ways of approaching the fabrication process and use of materials in construction. Her area of expertise is computational and parametric design, with a focus on digital fabrication and sustainable design. Popescu earned her doctorate at ETH Zurich.

Paris Smaragdis SM ’97, PhD ’01 is a professor in the Music and Theater Arts Section, holding an MIT Schwarzman College of Computing shared position with EECS. His research focus lies at the intersection of signal processing and machine learning, especially as it relates to sound and music. Prior to coming to MIT, he worked as a research scientist at Mitsubishi Electric Research Labs, a senior research scientist at Adobe Research, and an Amazon Scholar with Amazon’s AWS. He spent 15 years as a professor at the University of Illinois Urbana Champaign in the Computer Science Department, where he spearheaded the design of the CS+Music program, and served as an associate director of the School of Computer and Data Science. He holds a BMus from Berklee College of Music and earned his PhD in perceptual computing from MIT.

Daniel Varon is an assistant professor in the Department of Aeronautics and Astronautics, holding an MIT Schwarzman College of Computing shared position with IDSS. His work focuses on using satellite observations of atmospheric composition to better understand human impacts on the environment and identify opportunities to reduce them. An atmospheric scientist, Varon is particularly interested in greenhouse gasses, air pollution, and satellite remote sensing. He holds an MS in applied mathematics and a PhD in atmospheric chemistry, both from Harvard University.

In addition, the School of Engineering has adopted the shared faculty search model to hire its first shared faculty member:

Mark Rau is an assistant professor in the Music and Theater Arts Section, holding a School of Engineering shared position with EECS. He is involved in developing graduate programming focused on music technology. He has an interest in musical acoustics, vibration and acoustic measurement, audio signal processing, and physical modeling synthesis. His work focuses on musical instruments and creative audio effects. He holds an MA in music, science, and technology from Stanford, as well as a BS in physics and BMus in jazz from McGill University. He earned his PhD at Stanford’s Center for Computer Research in Music and Acoustics.

The new core faculty are:

Mitchell Gordon is an assistant professor in EECS. He is also a member of CSAIL. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. His work has won awards at conferences in human-computer interaction and artificial intelligence, including a best paper award at CHI and an Oral at NeurIPS. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.

Omar Khattab is an assistant professor in EECS. He is also a member of CSAIL. His work focuses on natural language processing, information retrieval, and AI systems. His research includes developing new algorithms and abstractions for declarative AI programming and for composing retrieval and reasoning. He received his BS from Carnegie Mellon University and his PhD from Stanford University, both in computer science.

Rachit Nigam will join EECS as an assistant professor in January 2026. He will also be a member of CSAIL and the Microsystems Technology Laboratories. He works on programming languages and computer architecture to address the design, verification, and usability challenges of specialized hardware. He was previously a visiting scholar at MIT. Nigam earned an MS and PhD in computer science from Cornell University.

Lincoln Laboratory and Haystack Observatory team up to unveil hidden parts of the galaxy

Fri, 10/17/2025 - 2:50pm

For centuries, humans have sought to study the stars and celestial bodies, whether through observations made by naked eye or by telescopes on the ground and in space that can view the universe across nearly the entire electromagnetic spectrum. Each view unlocks new information about the denizens of space — X-ray pulsars, gamma-ray bursts — but one is still missing: the low-frequency radio sky.

Researchers from MIT Lincoln Laboratory, the MIT Haystack Observatory, and Lowell Observatory are working on a NASA-funded concept study called the Great Observatory for Long Wavelengths, or GO-LoW, that outlines a method to view the universe at as-of-yet unseen low frequencies using a constellation of thousands of small satellites. The wavelengths of these frequencies are 15 meters to several kilometers in length, which means they require a very big telescope in order to see clearly.

"GO-LoW will be a new kind of telescope, made up of many thousands of spacecraft that work together semi-autonomously, with limited input from Earth," says Mary Knapp, the principal investigator for GO-LoW at the MIT Haystack Observatory. "GO-LoW will allow humans to see the universe in a new light, opening up one of the very last frontiers in the electromagnetic spectrum."

The difficulty in viewing the low-frequency radio sky comes from Earth's ionosphere, a layer of the atmosphere that contains charged particles that prevent very low-frequency radio waves from passing through. Therefore, a space-based instrument is required to observe these wavelengths. Another challenge is that long-wavelength observations require correspondingly large telescopes, which would need to be many kilometers in length if built using traditional dish antenna designs. GO-LoW will use interferometry — a technique that combines signals from many spatially separated receivers that, when put together, will function as one large telescope — to obtain highly detailed data from exoplanets and other sources in space. A similar technique was used to make the first image of a black hole and, more recently, an image of the first known extrasolar radiation belts.

Melodie Kao, a member of the team from Lowell Observatory, says the data could reveal details about an exoplanet's makeup and potential for life. "[The radio wave aurora around an exoplanet] carries important information, such as whether or not the planet has a magnetic field, how strong it is, how fast the planet is rotating, and even hints about what's inside," she says. "Studying exoplanet radio aurorae and the magnetic fields that they trace is an important piece of the habitability puzzle, and it's a key science goal for GO-LoW."

Several recent trends and technology developments will make GO-LoW possible in the near future, such as the declining cost of mass-produced small satellites, the rise of mega-constellations, and the return of large, high-capacity launch vehicles like NASA's Space Launch System. Go-LoW would be the first mega-constellation that uses interferometry for scientific purposes.

The GO-LoW constellation will be built through several successive launches, each containing thousands of spacecraft. Once they reach low-Earth orbit, the spacecraft will be refueled before journeying on to their final destination — an Earth-sun Lagrange point where they will then be deployed. Lagrange points are regions in space where the gravitational forces of two large celestial bodies (like the sun and Earth) are in equilibrium, such that a spacecraft requires minimal fuel to maintain its position relative to the two larger bodies.  At this long distance from Earth (1 astronomical unit, or approximately 93 million miles), there will also be much less radio-frequency interference that would otherwise obscure GO-LoW’s sensitive measurements.

"GO-LoW will have a hierarchical architecture consisting of thousands of small listener nodes and a smaller number of larger communication and computation nodes (CCNs)," says Kat Kononov, a team member from Lincoln Laboratory's Applied Space Systems Group, who has been working with MIT Haystack staff since 2020, with Knapp serving as her mentor during graduate school. A node refers to an individual small satellite within the constellation. "The listener nodes are small, relatively simple 3U CubeSats — about the size of a loaf of bread — that collect data with their low-frequency antennas, store it in memory, and periodically send it to their communication and computation node via a radio link." In comparison, the CCNs are about the size of a mini-fridge.

The CCN will keep track of the positions of the listener nodes in their neighborhood; collect and reduce the data from their respective listener nodes (around 100 of them); and then transmit that data back to Earth, where more intensive data processing can be performed.

At full strength, with approximately 100,000 listener nodes, the GO-LoW constellation should be able to see exoplanets with magnetic fields in the solar neighborhood — within 5 to 10 parsecs — many for the very first time.

The GO-LoW research team recently published the results of their findings from Phase I of the study, which identified a type of advanced antenna called a vector sensor as the best type for this application. In 2024, Lincoln Laboratory designed a compact deployable version of the sensor suitable for use in space.

The team is now working on Phase II of the program, which is to build a multi-agent simulation of constellation operations.

"What we learned during the Phase I study is that the hard part for GO-LoW is not any specific technology … the hard part is the system: the system engineering and the autonomy to run the system," says Knapp. "So, how do we build this constellation such that it's a tractable problem? That's what we’re exploring in this next part of the study."

GO-LoW is one of many civil space programs at Lincoln Laboratory that aim to harness advanced technologies originally developed for national security to enable new space missions that support science and society. "By adapting these capabilities to serve new stakeholders, the laboratory helps open novel frontiers of discovery while building resilient, cost-effective systems that benefit the nation and the world," says Laura Kennedy, who is the deputy lead of Lincoln Laboratory's Civil Space Systems and Technology Office.

"Like landing on the moon in 1969, or launching Hubble in the 1990s, GO-LoW is envisioned to let us see something we've never seen before and generate scientific breakthroughs," says Kononov.

Go-LoW is a collaboration between Lincoln Laboratory, Haystack Observatory, and Lowell University, as well as Lenny Paritsky from LeafLabs and Jacob Turner from Cornell University.

New software designs eco-friendly clothing that can reassemble into new items

Fri, 10/17/2025 - 2:30pm

It’s hard to keep up with the ever-changing trends of the fashion world. What’s “in” one minute is often out of style the next season, potentially causing you to re-evaluate your wardrobe.

Staying current with the latest fashion styles can be wasteful and expensive, though. Roughly 92 million tons of textile waste are produced annually, including the clothes we discard when they go out of style or no longer fit. But what if we could simply reassemble our clothes into whatever outfits we wanted, adapting to trends and the ways our bodies change?

A team of researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Adobe are attempting to bring eco-friendly, versatile garments to life. Their new “Refashion” software system breaks down fashion design into modules — essentially, smaller building blocks — by allowing users to draw, plan, and visualize each element of a clothing item. The tool turns fashion ideas into a blueprint that outlines how to assemble each component into reconfigurable clothing, such as a pair of pants that can be transformed into a dress.

With Refashion, users simply draw shapes and place them together to develop an outline for adaptable fashion pieces. It’s a visual diagram that shows how to cut garments, providing a straightforward way to design things like a shirt with an attachable hood for rainy days. One could also create a skirt that can then be reconfigured into a dress for a formal dinner, or maternity wear that fits during different stages of pregnancy.

“We wanted to create garments that consider reuse from the start,” says Rebecca Lin, MIT Department of Electrical Engineering and Computer Science (EECS) PhD student, CSAIL and Media Lab researcher, and lead author on a paper presenting the project. “Most clothes you buy today are static, and are discarded when you no longer want them. Refashion instead makes the most of our garments by helping us design items that can be easily resized, repaired, or restyled into different outfits.”

Modules à la mode

The researchers conducted a preliminary user study where both designers and novices explored Refashion and were able to create garment prototypes. Participants assembled pieces such as an asymmetric top that could be extended into a jumpsuit, or remade into a formal dress, often within 30 minutes. These results suggest that Refashion has the potential to make prototyping garments more approachable and efficient. But what features might contribute to this ease of use?

Its interface first presents a simple grid in its “Pattern Editor” mode, where users can connect dots to outline the boundaries of a clothing item. It’s essentially drawing rectangular panels and specifying how different modules will connect to each other.

Users can customize the shape of each component, create a straight design for garments (which might be useful for less form-fitting items, like chinos) or perhaps tinkering with one of Refashion’s templates. A user can edit pre-designed blueprints for things like a T-shirt, fitted blouse, or trousers.

Another, more creative route is to change the design of individual modules. One can choose the “pleat” feature to fold a garment over itself, similar to an accordion, for starters. It’s a useful way to design something like a maxi dress. The “gather” option adds an artsy flourish, where a garment is crumpled together to create puffy skirts or sleeves. A user might even go with the “dart” module, which removes a triangular piece from the fabric. It allows for shaping a garment at the waist (perhaps for a pencil skirt) or tailor to the upper body (fitted shirts, for instance).

While it might seem that each of these components needs to be sewn together, Refashion enables users to connect garments through more flexible, efficient means. Edges can be seamed together via double-sided connectors such as metal snaps (like the buttons used to close a denim jacket) or Velcro dots. A user could also fasten them in pins called brads, which have a pointed side that they stick through a hole and split into two “legs” to attach to another surface; it’s a handy way to secure, say, a picture on a poster board. Both connective methods make it easy to reconfigure modules, should they be damaged or a “fit check” calls for a new look.

As a user designs their clothing piece, the system automatically creates a simplified diagram of how it can be assembled. The pattern is divided into numbered blocks, which is dragged onto different parts of a 2D mannequin to specify the position of each component. The user can then simulate how their sustainable clothing will look on 3D models of a range of body types (one can also upload a model).

Finally, a digital blueprint for sustainable clothing can extend, shorten, or combine with other pieces. Thanks to Refashion, a new piece could be emblematic of a potential shift in fashion: Instead of buying new clothes every time we want a new outfit, we can simply reconfigure existing ones. Yesterday’s scarf could be today’s hat, and today’s T-shirt could be tomorrow’s jacket.

“Rebecca’s work is at an exciting intersection between computation and art, craft, and design,” says MIT EECS professor and CSAIL principal investigator Erik Demaine, who advises Lin. “I’m excited to see how Refashion can make custom fashion design accessible to the wearer, while also making clothes more reusable and sustainable.”

Constant change

While Refashion presents a greener vision for the future of fashion, the researchers note that they’re actively improving the system. They intend to revise the interface to support more durable items, stepping beyond standard prototyping fabrics. Refashion may soon support other modules, like curved panels, as well. The CSAIL-Adobe team may also evaluate whether their system can use as few materials as possible to minimize waste, and whether it can help “remix” old store-bought outfits.

Lin also plans to develop new computational tools that help designers create unique, personalized outfits using colors and textures. She’s exploring how to design clothing by patchwork — essentially, cutting out small pieces from materials like decorative fabrics, recycled denim, and crochet blocks and assembling them into a larger item.

“This is a great example of how computer-aided design can also be key in supporting more sustainable practices in the fashion industry,” says Adrien Bousseau, a senior researcher at Inria Centre at Université Côte d'Azur who wasn’t involved in the paper. “By promoting garment alteration from the ground up, they developed a novel design interface and accompanying optimization algorithm that helps designers create garments that can undergo a longer lifetime through reconfiguration. While sustainability often imposes additional constraints on industrial production, I am confident that research like the one by Lin and her colleagues will empower designers in innovating despite these constraints.”

Lin wrote the paper with Adobe Research scientists Michal Lukáč and Mackenzie Leake, who is the paper’s senior author and a former CSAIL postdoc. Their work was supported, in part, by the MIT Morningside Academy for Design, an MIT MAKE Design-2-Making Mini-Grant, and the Natural Sciences and Engineering Research Council of Canada. The researchers presented their work recently at the ACM Symposium on User Interface Software and Technology.

In a surprising discovery, scientists find tiny loops in the genomes of dividing cells

Fri, 10/17/2025 - 5:00am

Before cells can divide, they first need to replicate all of their chromosomes, so that each of the daughter cells can receive a full set of genetic material. Until now, scientists had believed that as division occurs, the genome loses the distinctive 3D internal structure that it typically forms.

Once division is complete, it was thought, the genome gradually regains that complex, globular structure, which plays an essential role in controlling which genes are turned on in a given cell.

However, a new study from MIT shows that in fact, this picture is not fully accurate. Using a higher-resolution genome mapping technique, the research team discovered that small 3D loops connecting regulatory elements and genes persist in the genome during cell division, or mitosis.

“This study really helps to clarify how we should think about mitosis. In the past, mitosis was thought of as a blank slate, with no transcription and no structure related to gene activity. And we now know that that’s not quite the case,” says Anders Sejr Hansen, an associate professor of biological engineering at MIT. “What we see is that there’s always structure. It never goes away.”

The researchers also discovered that these regulatory loops appear to strengthen when chromosomes become more compact in preparation for cell division. This compaction brings genetic regulatory elements closer together and encourages them to stick together. This may help cells “remember” interactions present in one cell cycle and carry it to the next one.

“The findings help to bridge the structure of the genome to its function in managing how genes are turned on and off, which has been an outstanding challenge in the field for decades,” says Viraat Goel PhD ’25, the lead author of the study.

Hansen and Edward Banigan, a research scientist in MIT’s Institute for Medical Engineering and Science, are the senior authors of the paper, which appears today in Nature Structural and Molecular Biology. Leonid Mirny, a professor in MIT’s Institute for Medical Engineering and Science and the Department of Physics, and Gerd Blobel, a professor at the Perelman School of Medicine at the University of Pennsylvania, are also authors of the study.

A surprising finding

Over the past 20 years, scientists have discovered that inside the cell nucleus, DNA organizes itself into 3D loops. While many loops enable interactions between genes and regulatory regions that may be millions of base pairs away from each other, others are formed during cell division to compact chromosomes. Much of the mapping of these 3D structures has been done using a technique called Hi-C, originally developed by a team that included MIT researchers and was led by Job Dekker at the University of Massachusetts Chan Medical School. To perform Hi-C, researchers use enzymes to chop the genome into many small pieces and biochemically link pieces that are near each other in 3D space within the cell’s nucleus. They then determine the identities of the interacting pieces by sequencing them.

However, that technique doesn’t have high enough resolution to pick out all specific interactions between genes and regulatory elements such as enhancers. Enhancers are short sequences of DNA that can help to activate the transcription of a gene by binding to the gene’s promoter — the site where transcription begins.

In 2023, Hansen and others developed a new technique that allows them to analyze 3D genome structures with 100 to 1,000 times greater resolution than was previously possible. This technique, known as Region-Capture Micro-C (RC-MC), uses a different enzyme that cuts the genome into small fragments of similar size. It also focuses on a smaller segment of the genome, allowing for high-resolution 3-D mapping of a targeted genome region.

Using this technique, the researchers were able to identify a new kind of genome structure that hadn’t been seen before, which they called “microcompartments.” These are tiny highly connected loops that form when enhancers and promoters located near each other stick together.

In that paper, experiments revealed that these loops were not formed by the same mechanisms that form other genome structures, but the researchers were unable to determine exactly how they do form. In hopes of answering that question, the team set out to study cells as they undergo cell division. During mitosis, chromosomes become much more compact, so that they can be duplicated, sorted, and divvied up between two daughter cells. As this happens, larger genome structures called A/B compartments and topologically associating domains (TADs) disappear completely.

The researchers believed that the microcompartments they had discovered would also disappear during mitosis. By tracking cells through the entire cell division process, they hoped to learn how the microcompartments appear after mitosis is completed.

“During mitosis, it has been thought that almost all gene transcription is shut off. And before our paper, it was also thought that all 3D structure related to gene regulation was lost and replaced by compaction. It’s a complete reset every cell cycle,” Hansen says.

However, to their surprise, the researchers found that microcompartments could still be seen during mitosis, and in fact they become more prominent as the cell goes through cell division.

“We went into this study thinking, well, the one thing we know for sure is that there’s no regulatory structure in mitosis, and then we accidentally found structure in mitosis,” Hansen says.

Using their technique, the researchers also confirmed that larger structures such as A/B compartments and TADs do disappear during mitosis, as had been seen before.

“This study leverages the unprecedented genomic resolution of the RC-MC assay to reveal new and surprising aspects of mitotic chromatin organization, which we have overlooked in the past using traditional 3C-based assays. The authors reveal that, contrary to the well-described dramatic loss of TADs and compartmentalization during mitosis, fine-scale “microcompartments” — nested interactions between active regulatory elements — are maintained or even transiently strengthened,” says Effie Apostolou, an associate professor of molecular biology in medicine at Weill Cornell Medicine, who was not involved in the study.

A spike in transcription

The findings may offer an explanation for a spike in gene transcription that usually occurs near the end of mitosis, the researchers say. Since the 1960s, it had been thought that transcription ceased completely during mitosis, but in 2016 and 2017, a few studies showed that cells undergo a brief spike of transcription, which is quickly suppressed until the cell finishes dividing.

In their new study, the MIT team found that during mitosis, microcompartments are more likely to be found near the genes that spike during cell division. They also discovered that these loops appear to form as a result of the genome compaction that occurs during mitosis. This compaction brings enhancers and promoters closer together, allowing them to stick together to form microcompartments.

Once formed, the loops that constitute microcompartments may activate gene transcription somewhat by accident, which is then shut off by the cell. When the cell finishes dividing, entering a state known as G1, many of these small loops become weaker or disappear.

“It almost seems like this transcriptional spiking in mitosis is an undesirable accident that arises from generating a uniquely favorable environment for microcompartments to form during mitosis,” Hansen says. “Then, the cell quickly prunes and filters many of those loops out when it enters G1.”

Because chromosome compaction can also be influenced by a cell’s size and shape, the researchers are now exploring how variations in those features affect the structure of the genome and in turn, gene regulation.

“We are thinking about some natural biological settings where cells change shape and size, and whether we can perhaps explain some 3D genome changes that previously lack an explanation,” Hansen says. “Another key question is how does the cell then pick what are the microcompartments to keep and what are the microcompartments to remove when you enter G1, to ensure fidelity of gene expression?”

The research was funded in part by the National Institutes of Health, a National Science Foundation CAREER Award, the Gene Regulation Observatory of the Broad Institute, a Pew-Steward Scholar Award for Cancer Research, the Mathers Foundation, the MIT Westaway Fund, the Bridge Project of the Koch Institute and Dana-Farber/Harvard Cancer Center, and the Koch Institute Support (core) Grant from the National Cancer Institute.

Book reviews technologies aiming to remove carbon from the atmosphere

Thu, 10/16/2025 - 4:35pm

Two leading experts in the field of carbon capture and sequestration (CCS) — Howard J. Herzog, a senior research engineer in the MIT Energy Initiative, and Niall Mac Dowell, a professor in energy systems engineering at Imperial College London — explore methods for removing carbon dioxide already in the atmosphere in their new book, “Carbon Removal.” Published in October, the book is part of the Essential Knowledge series from the MIT Press, which consists of volumes “synthesizing specialized subject matter for nonspecialists” and includes Herzog’s 2018 book, “Carbon Capture.”

Burning fossil fuels, as well as other human activities, cause the release of carbon dioxide (CO2) into the atmosphere, where it acts like a blanket that warms the Earth, resulting in climate change. Much attention has focused on mitigation technologies that reduce emissions, but in their book, Herzog and Mac Dowell have turned their attention to “carbon dioxide removal” (CDR), an approach that removes carbon already present in the atmosphere.

In this new volume, the authors explain how CO2 naturally moves into and out of the atmosphere and present a brief history of carbon removal as a concept for dealing with climate change. They also describe the full range of “pathways” that have been proposed for removing CO2 from the atmosphere. Those pathways include engineered systems designed for “direct air capture” (DAC), as well as various “nature-based” approaches that call for planting trees or taking steps to enhance removal by biomass or the oceans. The book offers easily accessible explanations of the fundamental science and engineering behind each approach.

The authors compare the “quality” of the different pathways based on the following metrics:

Accounting. For public acceptance of any carbon-removal strategy, the authors note, the developers need to get the accounting right — and that’s not always easy. “If you’re going to spend money to get CO2 out of the atmosphere, you want to get paid for doing it,” notes Herzog. It can be tricky to measure how much you have removed, because there’s a lot of CO2 going in and out of the atmosphere all the time. Also, if your approach involves, say, burning fossil fuels, you must subtract the amount of CO2 that’s emitted from the total amount you claim to have removed. Then there’s the timing of the removal. With a DAC device, the removal happens right now, and the removed CO2 can be measured. “But if I plant a tree, it’s going to remove CO2 for decades. Is that equivalent to removing it right now?” Herzog queries. How to take that factor into account hasn’t yet been resolved.

Permanence. Different approaches keep the CO2 out of the atmosphere for different durations of time. How long is long enough? As the authors explain, this is one of the biggest issues, especially with nature-based solutions, where events such as wildfires or pestilence or land-use changes can release the stored CO2 back into the atmosphere. How do we deal with that?

Cost. Cost is another key factor. Using a DAC device to remove CO2 costs far more than planting trees, but it yields immediate removal of a measurable amount of CO2 that can then be locked away forever. How does one monetize that trade-off?

Additionality. “You’re doing this project, but would what you’re doing have been done anyway?” asks Herzog. “Is your effort additional to business as usual?” This question comes into play with many of the nature-based approaches involving trees, soils, and so on.

Permitting and governance. These issues are especially important — and complicated — with approaches that involve doing things in the ocean. In addition, Herzog points out that some CCS projects could also achieve carbon removal, but they would have a hard time getting permits to build the pipelines and other needed infrastructure.

The authors conclude that none of the CDR strategies now being proposed is a clear winner on all the metrics. However, they stress that carbon removal has the potential to play an important role in meeting our climate change goals — not by replacing our emissions-reduction efforts, but rather by supplementing them. However, as Herzog and Mac Dowell make clear in their book, many challenges must be addressed to move CDR from today’s speculation to deployment at scale, and the book supports the wider discussion about how to move forward. Indeed, the authors have fulfilled their stated goal: “to provide an objective analysis of the opportunities and challenges for CDR and to separate myth from reality.”

Breaking the old model of education with MIT Open Learning

Thu, 10/16/2025 - 3:15pm

At an age when many kids prefer to play games on their phones, 11-year-old Vivan Mirchandani wanted to explore physics videos. Little did he know that MIT Open Learning’s free online resources would change the course of his life. 

Now, at 16, Mirchandani is well on his way to a career as a physics scholar — all because he forged his own unconventional educational journey.

Nontraditional education has granted Mirchandani the freedom to pursue topics he’s personally interested in. This year, he wrote a paper on cosmology that proposes a new framework for understanding Einstein’s general theory of relativity. Other projects include expanding on fluid dynamics laws for cats, training an AI model to resemble the consciousness of his late grandmother, and creating his own digital twin. That’s in addition to his regular studies, regional science fairs, Model United Nations delegation, and a TEDEd Talk.

Mirchandani started down this path between the ages of 10 and 12, when he decided to read books and find online content about physics during the early Covid-19 lockdown in India. He was shocked to find that MIT Open Learning offers free course videos, lecture notes, exams, and other resources from the Institute on sites like MIT OpenCourseWare and the newly launched MIT Learn.

“My first course was 8.01 (Classical Mechanics), and it completely changed how I saw physics,” Mirchandani says. “Physics sounded like elegance. It’s the closest we’ve ever come to have a theory of everything.”

Experiencing “real learning”

Mirchandani discovered MIT Open Learning through OpenCourseWare, which offers free, online, open educational resources from MIT undergraduate and graduate courses. He says MIT Open Learning’s “academically rigorous” content prepares learners to ask questions and think like a scientist.

“Instead of rote memorization, I finally experienced real learning,” Mirchandani says. “OpenCourseWare was a holy grail. Without it, I would still be stuck on the basic concepts.”

Wanting to follow in the footsteps of physicists like Sir Isaac Newton, Albert Einstein, and Stephen Hawking, Mirchandani decided at age 12 he would sacrifice his grade point average to pursue a nontraditional educational path that gave him hands-on experience in science.

“The education system doesn’t prepare you for actual scientific research, it prepares you for exams,” Mirchandani says. “What draws me to MIT Open Learning and OpenCourseWare is it breaks the old model of education. It’s not about sitting in a lecture hall, it’s about access and experimentation.”

With guidance from his physics teacher, Mirchandani built his own curriculum using educational materials on MIT OpenCourseWare to progress from classical physics to computer science to quantum physics. He has completed more than 27 online MIT courses to date.

“The best part of OpenCourseWare is you get to study from the greatest institution in the world, and you don’t have to pay for it,” he says.

Innovating in the real world

6.0001 (Introduction to Computer Science and Programming Using Python) and slides from 2.06 (Fluid Dynamics) gave Mirchandani the foundation to help with the family business, Dynamech Engineers, which sells machinery for commercial snack production. Some of the recent innovations he has assisted with include a zero-oil frying technology that cuts 300 calories per kilogram, a gas-based heat exchange system, and a simplified, singular machine combining the processes of two separate machines. Using the modeling techniques he learned through MIT OpenCourseWare, Mirchandani designed how these products would work without losing efficiency.

But when you ask Mirchandani which achievement he is most proud of, he’ll say it’s being one of 35 students accepted for the inaugural RSI-India cohort, an academic program for high school students modeled after the Research Science Institute program co-sponsored by MIT and the Center for Excellence in Education. Competing against other Indian students who had perfect scores on their board exams and SATs, he didn’t expect to get in, but the program valued the practical research experience he was able to pursue thanks to the knowledge he gained from his external studies.

“None of it would have happened without MIT OpenCourseWare,” he says. “It’s basically letting curiosity get the better of us. If everybody does that, we’d have a better scientific community.”

Method teaches generative AI models to locate personalized objects

Thu, 10/16/2025 - 12:00am

Say a person takes their French Bulldog, Bowser, to the dog park. Identifying Bowser as he plays among the other canines is easy for the dog-owner to do while onsite.

But if someone wants to use a generative AI model like GPT-5 to monitor their pet while they are at work, the model could fail at this basic task. Vision-language models like GPT-5 often excel at recognizing general objects, like a dog, but they perform poorly at locating personalized objects, like Bowser the French Bulldog.    

To address this shortcoming, researchers from MIT and the MIT-IBM Watson AI Lab have introduced a new training method that teaches vision-language models to localize personalized objects in a scene.

Their method uses carefully prepared video-tracking data in which the same object is tracked across multiple frames. They designed the dataset so the model must focus on contextual clues to identify the personalized object, rather than relying on knowledge it previously memorized.

When given a few example images showing a personalized object, like someone’s pet, the retrained model is better able to identify the location of that same pet in a new image.

Models retrained with their method outperformed state-of-the-art systems at this task. Importantly, their technique leaves the rest of the model’s general abilities intact.

This new approach could help future AI systems track specific objects across time, like a child’s backpack, or localize objects of interest, such as a species of animal in ecological monitoring. It could also aid in the development of AI-driven assistive technologies that help visually impaired users find certain items in a room.

“Ultimately, we want these models to be able to learn from context, just like humans do. If a model can do this well, rather than retraining it for each new task, we could just provide a few examples and it would infer how to perform the task from that context. This is a very powerful ability,” says Jehanzeb Mirza, an MIT postdoc and senior author of a paper on this technique.

Mirza is joined on the paper by co-lead authors Sivan Doveh, a graduate student at Weizmann Institute of Science; and Nimrod Shabtay, a researcher at IBM Research; James Glass, a senior research scientist and the head of the Spoken Language Systems Group in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL); and others. The work will be presented at the International Conference on Computer Vision.

An unexpected shortcoming

Researchers have found that large language models (LLMs) can excel at learning from context. If they feed an LLM a few examples of a task, like addition problems, it can learn to answer new addition problems based on the context that has been provided.

A vision-language model (VLM) is essentially an LLM with a visual component connected to it, so the MIT researchers thought it would inherit the LLM’s in-context learning capabilities. But this is not the case.

“The research community has not been able to find a black-and-white answer to this particular problem yet. The bottleneck could arise from the fact that some visual information is lost in the process of merging the two components together, but we just don’t know,” Mirza says.

The researchers set out to improve VLMs abilities to do in-context localization, which involves finding a specific object in a new image. They focused on the data used to retrain existing VLMs for a new task, a process called fine-tuning.

Typical fine-tuning data are gathered from random sources and depict collections of everyday objects. One image might contain cars parked on a street, while another includes a bouquet of flowers.

“There is no real coherence in these data, so the model never learns to recognize the same object in multiple images,” he says.

To fix this problem, the researchers developed a new dataset by curating samples from existing video-tracking data. These data are video clips showing the same object moving through a scene, like a tiger walking across a grassland.

They cut frames from these videos and structured the dataset so each input would consist of multiple images showing the same object in different contexts, with example questions and answers about its location.

“By using multiple images of the same object in different contexts, we encourage the model to consistently localize that object of interest by focusing on the context,” Mirza explains.

Forcing the focus

But the researchers found that VLMs tend to cheat. Instead of answering based on context clues, they will identify the object using knowledge gained during pretraining.

For instance, since the model already learned that an image of a tiger and the label “tiger” are correlated, it could identify the tiger crossing the grassland based on this pretrained knowledge, instead of inferring from context.

To solve this problem, the researchers used pseudo-names rather than actual object category names in the dataset. In this case, they changed the name of the tiger to “Charlie.”

“It took us a while to figure out how to prevent the model from cheating. But we changed the game for the model. The model does not know that ‘Charlie’ can be a tiger, so it is forced to look at the context,” he says.

The researchers also faced challenges in finding the best way to prepare the data. If the frames are too close together, the background would not change enough to provide data diversity.

In the end, finetuning VLMs with this new dataset improved accuracy at personalized localization by about 12 percent on average. When they included the dataset with pseudo-names, the performance gains reached 21 percent.

As model size increases, their technique leads to greater performance gains.

In the future, the researchers want to study possible reasons VLMs don’t inherit in-context learning capabilities from their base LLMs. In addition, they plan to explore additional mechanisms to improve the performance of a VLM without the need to retrain it with new data.

“This work reframes few-shot personalized object localization — adapting on the fly to the same object across new scenes — as an instruction-tuning problem and uses video-tracking sequences to teach VLMs to localize based on visual context rather than class priors. It also introduces the first benchmark for this setting with solid gains across open and proprietary VLMs. Given the immense significance of quick, instance-specific grounding — often without finetuning — for users of real-world workflows (such as robotics, augmented reality assistants, creative tools, etc.), the practical, data-centric recipe offered by this work can help enhance the widespread adoption of vision-language foundation models,” says Saurav Jha, a postdoc at the Mila-Quebec Artificial Intelligence Institute, who was not involved with this work.

Additional co-authors are Wei Lin, a research associate at Johannes Kepler University; Eli Schwartz, a research scientist at IBM Research; Hilde Kuehne, professor of computer science at Tuebingen AI Center and an affiliated professor at the MIT-IBM Watson AI Lab; Raja Giryes, an associate professor at Tel Aviv University; Rogerio Feris, a principal scientist and manager at the MIT-IBM Watson AI Lab; Leonid Karlinsky, a principal research scientist at IBM Research; Assaf Arbelle, a senior research scientist at IBM Research; and Shimon Ullman, the Samy and Ruth Cohn Professor of Computer Science at the Weizmann Institute of Science.

This research was funded, in part, by the MIT-IBM Watson AI Lab.

MIT-Toyota collaboration powers driver assistance in millions of vehicles

Wed, 10/15/2025 - 3:35pm

A decade-plus collaboration between MIT’s AgeLab and the Toyota Motor Corporation is recognized as a key contributor to advancements in automotive safety and human-machine interaction. Through the AgeLab at the MIT Center for Transportation and Logistics (CTL), researchers have collected and analyzed vast real-world driving datasets that have helped inform Toyota’s vehicle design and safety systems.

Toyota recently marked the completion of its 100th project through the Collaborative Safety Research Center (CSRC), celebrating MIT’s role in shaping technologies that enhance driver-assistance features and continue to forge the path for automated mobility. A key foundation for the 100th project is CSRC’s ongoing support for MIT CTL’s Advanced Vehicle Technology (AVT) Consortium.

Real-world data, real-world impact

“AVT was conceptualized over a decade ago as an academic-industry partnership to promote shared investment in real-world, naturalistic data collection, analysis, and collaboration — efforts aimed at advancing safer, more convenient, and more comfortable automobility,” says Bryan Reimer, founder and co-director of AVT. “Since its founding, AVT has drawn together over 25 organizations — including vehicle manufacturers, suppliers, insurers, and consumer research groups — to invest in understanding how automotive technologies function, how they influence driver behavior, and where further innovation is needed. This work has enabled stakeholders like Toyota to make more-informed decisions in product development and deployment.”

“CSRC’s 100th project marks a significant milestone in our collaboration,” Reimer adds. “We deeply value CSRC’s sustained investment, and commend the organization’s commitment to global industry impact and the open dissemination of research to advance societal benefit.”

“Toyota, through its Collaborative Safety Research Center, is proud to be a founding member of the AVT Consortium,” says Jason Hallman, senior manager of Toyota CSRC. “Since 2011, CSRC has collaborated with researchers such as AVT and MIT AgeLab on projects that help inform future products and policy, and to promote a future safe mobility society for all. The AVT specifically has helped us to study the real-world use of several vehicle technologies now available.”

Among these technologies are lane-centering assistance and adaptive cruise control — widely-used technologies that benefit from an understanding of how drivers interact with automation. “AVT uniquely combines vehicle and driver data to help inform future products and highlight the interplay between the performance of these features and the drivers using them,” says Josh Domeyer, principal scientist at CSRC.

Influencing global standards and Olympic-scale innovation

Insights from MIT’s pedestrian-driver interaction research with CSRC also helped shape Toyota’s automated vehicle communication systems. “These data helped develop our foundational understanding that drivers and pedestrians use their movements to communicate during routine traffic encounters,” said Domeyer. “This concept informed the deployment of Toyota’s e-Palette at the Tokyo Olympics, and it has been captured as a best practice in an ISO standard for automated driving system communication.”

The AVT Consortium's naturalistic driving datasets continue to serve as a foundation for behavioral safety strategies. From identifying moments of distraction to understanding how drivers multitask behind the wheel, the work is guiding subtle but impactful design considerations.

“By studying the natural behaviors of drivers and their contexts in the AVT datasets, we hope to identify new ways to encourage safe habits that align with customer preferences,” Domeyer says. “These can include subtle nudges, or modifications to existing vehicle features, or even communication and education partnerships outside of Toyota that reinforce these safe driving habits.”

Professor Yossi Sheffi, director of MIT CTL, comments, “This partnership exemplifies the impact of MIT collaborative research on industry to make real, practical innovation possible.” 

A model for industry-academic collaboration

Founded in 2015, the AVT Consortium brings together automotive manufacturers, suppliers, and insurers to accelerate research in driver behavior, safety, and the transition toward automated systems. The consortium’s interdisciplinary approach — integrating engineering, human factors, and data science — has helped generate one of the world’s most unique and actionable real-world driving datasets.

As Toyota celebrates its research milestone, MIT reflects on a partnership that exemplifies the power of industry-academic collaboration to shape safer, smarter mobility.

MIT engineers solve the sticky-cell problem in bioreactors and other industries

Wed, 10/15/2025 - 2:00pm

To help mitigate climate change, companies are using bioreactors to grow algae and other microorganisms that are hundreds of times more efficient at absorbing CO2 than trees. Meanwhile, in the pharmaceutical industry, cell culture is used to manufacture biologic drugs and other advanced treatments, including lifesaving gene and cell therapies.

Both processes are hampered by cells’ tendency to stick to surfaces, which leads to a huge amount of waste and downtime for cleaning. A similar problem slows down biofuel production, interferes with biosensors and implants, and makes the food and beverage industry less efficient.

Now, MIT researchers have developed an approach for detaching cells from surfaces on demand, using electrochemically generated bubbles. In an open-access paper published in Science Advances, the researchers demonstrated their approach in a lab prototype and showed it could work across a range of cells and surfaces without harming the cells.

“We wanted to develop a technology that could be high-throughput and plug-and-play, and that would allow cells to attach and detach on demand to improve the workflow in these industrial processes,” says Professor Kripa Varanasi, senior author of the study. “This is a fundamental issue with cells, and we’ve solved it with a process that can scale. It lends itself to many different applications.”

Joining Varanasi on the study are co-first authors Bert Vandereydt, a PhD student in mechanical engineering, and former postdoc Baptiste Blanc.

Solving a sticky problem

The researchers began with a mission.

“We’ve been working on figuring out how we can efficiently capture CO2 across different sources and convert it into valuable products for various end markets,” Varanasi says. “That’s where this photobioreactor and cell detachment comes into the picture.”

Photobioreactors are used to grow carbon-absorbing algae cells by creating tightly controlled environments involving water and sunlight. They feature long, winding tubes with clear surfaces to let in the light algae need to grow. When algae stick to those surfaces, they block out the light, requiring cleaning.

“You have to shut down and clean up the entire reactor as frequently as every two weeks,” Varanasi says. “It’s a huge operational challenge.”

The researchers realized other industries have similar problem due to many cells’ natural adhesion, or stickiness. Each industry has its own solution for cell adhesion depending on how important it is that the cells survive. Some people scrape the surfaces clean, while others use special coatings that are toxic to cells.

In the pharmaceutical and biotech industries, cell detachment is typically carried out using enzymes. However, this method poses several challenges — it can damage cell membranes, is time-consuming, and requires large amounts of consumables, resulting in millions of liters of biowaste.

To create a better solution, the researchers began by studying other efforts to clear surfaces with bubbles, which mainly involved spraying bubbles onto surfaces and had been largely ineffective.

“We realized we needed the bubbles to form on the surfaces where we don’t want these cells to stick, so when the bubbles detach it creates a local fluid flow that creates shear stress at the interface and removes the cells,” Varanasi explains.

Electric currents generate bubbles by splitting water into hydrogen and oxygen. But previous attempts at using electricity to detach cells were hampered because the cell culture mediums contain sodium chloride, which turns into bleach when combined with an electric current. The bleach damages the cells, making it impractical for many applications.

“The culprit is the anode — that’s where the sodium chloride turns to bleach,” Vandereydt explained. “We figured if we could separate that electrode from the rest of the system, we could prevent bleach from being generated.”

To make a better system, the researchers built a 3-square-inch glass surface and deposited a gold electrode on top of it. The layer of gold is so thin it doesn’t block out light. To keep the other electrode separate, the researchers integrated a special membrane that only allows protons to pass through. The set up allowed the researchers to send a current through without generating bleach.

To test their setup, they allowed algae cells from a concentrated solution to stick to the surfaces. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.

The researchers also studied the interaction between the bubbles and cells, finding the higher the current density, the more bubbles were created and the more algae was removed. They developed a model for understanding how much current would be needed to remove algae in different settings and matched it with results from experiments involving algae as well as cells from ovarian cancer and bones.

“Mammalian cells are orders of magnitude more sensitive than algae cells, but even with those cells, we were able to detach them with no impact to the viability of the cell,” Vandereydt says.

Getting to scale

The researchers say their system could represent a breakthrough in applications where bleach or other chemicals would harm cells. That includes pharmaceutical and food production.

“If we can keep these systems running without fouling and other problems, then we can make them much more economical,” Varanasi says.

For cell culture plates used in the pharmaceutical industry, the team envisions their system comprising an electrode that could be robotically moved from one culture plate to the next, to detach cells as they’re grown. It could also be coiled around algae harvesting systems.

“This has general applicability because it doesn’t rely on any specific biological or chemical treatments, but on a physical force that is system-agnostic,” Varanasi says. “It’s also highly scalable to a lot of different processes, including particle removal.”

Varanasi cautions there is much work to be done to scale up the system. But he hopes it can one day make algae and other cell harvesting more efficient.

“The burning problem of our time is to somehow capture CO2 in a way that’s economically feasible,” Varanasi says. “These photobioreactors could be used for that, but we have to overcome the cell adhesion problem.”

The work was supported, in part, by Eni S.p.A through the MIT Energy Initiative, the Belgian American Educational Foundation Fellowship, and the Maria Zambrano Fellowship.

Blending neuroscience, AI, and music to create mental health innovations

Wed, 10/15/2025 - 1:20pm

Computational neuroscientist and singer/songwriter Kimaya (Kimy) Lecamwasam, who also plays electric bass and guitar, says music has been a core part of her life for as long as she can remember. She grew up in a musical family and played in bands all through high school.

“For most of my life, writing and playing music was the clearest way I had to express myself,” says Lecamwasam. “I was a really shy and anxious kid, and I struggled with speaking up for myself. Over time, composing and performing music became central to both how I communicated and to how I managed my own mental health.”

Along with equipping her with valuable skills and experiences, she credits her passion for music as the catalyst for her interest in neuroscience.

“I got to see firsthand not only the ways that audiences reacted to music, but also how much value music had for musicians,” she says. “That close connection between making music and feeling well is what first pushed me to ask why music has such a powerful hold on us, and eventually led me to study the science behind it.”

Lecamwasam earned a bachelor’s degree in 2021 from Wellesley College, where she studied neuroscience — specifically in the Systems and Computational Neuroscience track — and also music. During her first semester, she took a class in songwriting that she says made her more aware of the connections between music and emotions. While studying at Wellesley, she participated in the MIT Undergraduate Research Opportunities Program for three years. Working in the Department of Brain and Cognitive Sciences lab of Emery Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience, she focused primarily on classifying consciousness in anesthetized patients and training brain-computer interface-enabled prosthetics using reinforcement learning.

“I still had a really deep love for music, which I was pursuing in parallel to all of my neuroscience work, but I really wanted to try to find a way to combine both of those things in grad school,” says Lecamwasam. Brown recommended that she look into the graduate programs at the MIT Media Lab within the Program in Media Arts and Sciences (MAS), which turned out to be an ideal fit.

“One thing I really love about where I am is that I get to be both an artist and a scientist,” says Lecamwasam. “That was something that was important to me when I was picking a graduate program. I wanted to make sure that I was going to be able to do work that was really rigorous, validated, and important, but also get to do cool, creative explorations and actually put the research that I was doing into practice in different ways.”

Exploring the physical, mental, and emotional impacts of music

Informed by her years of neuroscience research as an undergraduate and her passion for music, Lecamwasam focused her graduate research on harnessing the emotional potency of music into scalable, non-pharmacological mental health tools. Her master’s thesis focused on “pharmamusicology,” looking at how music might positively affect the physiology and psychology of those with anxiety.

The overarching theme of Lecamwasam’s research is exploring the various impacts of music and affective computing — physically, mentally, and emotionally. Now in the third year of her doctoral program in the Opera of the Future group, she is currently investigating the impact of large-scale live music and concert experiences on the mental health and well-being of both audience members and performers. She is also working to clinically validate music listening, composition, and performance as health interventions, in combination with psychotherapy and pharmaceutical interventions.

Her recent work, in collaboration with Professor Anna Huang’s Human-AI Resonance Lab, assesses the emotional resonance of AI-generated music compared to human-composed music; the aim is to identify more ethical applications of emotion-sensitive music generation and recommendation that preserve human creativity and agency, and can also be used as health interventions. She has co-led a wellness and music workshop at the Wellbeing Summit in Bilbao, Spain, and has presented her work at the 2023 CHI conference on Human Factors in Computing Systems in Hamburg, Germany and the 2024 Audio Mostly conference in Milan, Italy. 

Lecamwasam has collaborated with organizations near and far to implement real-world applications of her research. She worked with Carnegie Hall's Weill Music Institute on its Well-Being Concerts and is currently partnering on a study assessing the impact of lullaby writing on perinatal health with the North Shore Lullaby Project in Massachusetts, an offshoot of Carnegie Hall’s Lullaby Project. Her main international collaboration is with a company called Myndstream, working on projects comparing the emotional resonance of AI-generated music to human-composed music and thinking of clinical and real-world applications. She is also working on a project with the companies PixMob and Empatica (an MIT Media Lab spinoff), centered on assessing the impact of interactive lighting and large-scale live music experiences on emotional resonance in stadium and arena settings.

Building community

“Kimy combines a deep love for — and sophisticated knowledge of — music with scientific curiosity and rigor in ways that represent the Media Lab/MAS spirit at its best,” says Professor Tod Machover, Lecamwasam’s research advisor, Media Lab faculty director, and director of the Opera of the Future group. “She has long believed that music is one of the most powerful and effective ways to create personalized interventions to help stabilize emotional distress and promote empathy and connection. It is this same desire to establish sane, safe, and sustaining environments for work and play that has led Kimy to become one of the most effective and devoted community-builders at the lab.”

Lecamwasam has participated in the SOS (Students Offering Support) program in MAS for a few years, which assists students from a variety of life experiences and backgrounds during the process of applying to the Program in Media Arts and Sciences. She will soon be the first MAS peer mentor as part of a new initiative through which she will establish and coordinate programs including a “buddy system,” pairing incoming master’s students with PhD students as a way to help them transition into graduate student life at MIT. She is also part of the Media Lab’s Studcom, a student-run organization that promotes, facilitates, and creates experiences meant to bring the community together.

“I think everything that I have gotten to do has been so supported by the friends I’ve made in my lab and department, as well as across departments,” says Lecamwasam. “I think everyone is just really excited about the work that they do and so supportive of one another. It makes it so that even when things are challenging or difficult, I’m motivated to do this work and be a part of this community.”

Why some quantum materials stall while others scale

Wed, 10/15/2025 - 12:00am

People tend to think of quantum materials — whose properties arise from quantum mechanical effects — as exotic curiosities. But some quantum materials have become a ubiquitous part of our computer hard drives, TV screens, and medical devices. Still, the vast majority of quantum materials never accomplish much outside of the lab.

What makes certain quantum materials commercial successes and others commercially irrelevant? If researchers knew, they could direct their efforts toward more promising materials — a big deal since they may spend years studying a single material.

Now, MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their framework combines a material’s quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors. The researchers used their framework to evaluate over 16,000 materials, finding that the materials with the highest quantum fluctuation in the centers of their electrons also tend to be more expensive and environmentally damaging. The researchers also identified a set of materials that achieve a balance between quantum functionality and sustainability for further study.

The team hopes their approach will help guide the development of more commercially viable quantum materials that could be used for next generation microelectronics, energy harvesting applications, medical diagnostics, and more.

“People studying quantum materials are very focused on their properties and quantum mechanics,” says Mingda Li, associate professor of nuclear science and engineering and the senior author of the work. “For some reason, they have a natural resistance during fundamental materials research to thinking about the costs and other factors. Some told me they think those factors are too ‘soft’ or not related to science. But I think within 10 years, people will routinely be thinking about cost and environmental impact at every stage of development.”

The paper appears in Materials Today. Joining Li on the paper are co-first authors and PhD students Artittaya Boonkird, Mouyang Cheng, and Abhijatmedhi Chotrattanapituk, along with PhD students Denisse Cordova Carrizales and Ryotaro Okabe; former graduate research assistants Thanh Nguyen and Nathan Drucker; postdoc Manasi Mandal; Instructor Ellan Spero of the Department of Materials Science and Engineering (DMSE); Professor Christine Ortiz of the Department of DMSE; Professor Liang Fu of the Department of Physics; Professor Tomas Palacios of the Department of Electrical Engineering and Computer Science (EECS); Associate Professor Farnaz Niroui of EECS; Assistant Professor Jingjie Yeo of Cornell University; and PhD student Vsevolod Belosevich and Assostant Professor Qiong Ma of Boston College.

Materials with impact

Cheng and Boonkird say that materials science researchers often gravitate toward quantum materials with the most exotic quantum properties rather than the ones most likely to be used in products that change the world.

“Researchers don’t always think about the costs or environmental impacts of the materials they study,” Cheng says. “But those factors can make them impossible to do anything with.”

Li and his collaborators wanted to help researchers focus on quantum materials with more potential to be adopted by industry. For this study, they developed methods for evaluating factors like the materials’ price and environmental impact using their elements and common practices for mining and processing those elements. At the same time, they quantified the materials’ level of “quantumness” using an AI model created by the same group last year, based on a concept proposed by MIT professor of physics Liang Fu, termed quantum weight.

“For a long time, it’s been unclear how to quantify the quantumness of a material,” Fu says. “Quantum weight is very useful for this purpose. Basically, the higher the quantum weight of a material, the more quantum it is.”

The researchers focused on a class of quantum materials with exotic electronic properties known as topological materials, eventually assigning over 16,000 materials scores on environmental impact, price, import resilience, and more.

For the first time, the researchers found a strong correlation between the material’s quantum weight and how expensive and environmentally damaging it is.

“That’s useful information because the industry really wants something very low-cost,” Spero says. “We know what we should be looking for: high quantum weight, low-cost materials. Very few materials being developed meet that criteria, and that likely explains why they don’t scale to industry.”

The researchers identified 200 environmentally sustainable materials and further refined the list down to 31 material candidates that achieved an optimal balance of quantum functionality and high-potential impact.

The researchers also found that several widely studied materials exhibit high environmental impact scores, indicating they will be hard to scale sustainably. “Considering the scalability of manufacturing and environmental availability and impact is critical to ensuring practical adoption of these materials in emerging technologies,” says Niroui.

Guiding research

Many of the topological materials evaluated in the paper have never been synthesized, which limited the accuracy of the study’s environmental and cost predictions. But the authors say the researchers are already working with companies to study some of the promising materials identified in the paper.

“We talked with people at semiconductor companies that said some of these materials were really interesting to them, and our chemist collaborators also identified some materials they find really interesting through this work,” Palacios says. “Now we want to experimentally study these cheaper topological materials to understand their performance better.”

“Solar cells have an efficiency limit of 34 percent, but many topological materials have a theoretical limit of 89 percent. Plus, you can harvest energy across all electromagnetic bands, including our body heat,” Fu says. “If we could reach those limits, you could easily charge your cell phone using body heat. These are performances that have been demonstrated in labs, but could never scale up. That’s the kind of thing we’re trying to push forward."

This work was supported, in part, by the National Science Foundation and the U.S. Department of Energy.

Earthquake damage at deeper depths occurs long after initial activity

Tue, 10/14/2025 - 5:00pm

Earthquakes often bring to mind images of destruction, of the Earth breaking open and altering landscapes. But after an earthquake, the area around it undergoes a period of post-seismic deformation, where areas that didn’t break experience new stress as a result of the sudden change in the surroundings. Once it has adjusted to this new stress, it reaches a state of recovery.

Geologists have often thought that this recovery period was a smooth, continuous process. But MIT research published recently in Science has found evidence that while healing occurs quickly at shallow depths — roughly above 10 km — deeper depths recover more slowly, if at all.

“If you were to look before and after in the shallow crust, you wouldn’t see any permanent change. But there’s this very permanent change that persists in the mid-crust,” says Jared Bryan, a graduate student in the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and lead author on the paper.

The paper’s other authors include EAPS Professor William Frank and Pascal Audet from the University of Ottawa.

Everything but the quakes

In order to assemble a full understanding of how the crust behaves before, during, and after an earthquake sequence, the researchers looked at seismic data from the 2019 Ridgecrest earthquakes in California. This immature fault zone experienced the largest earthquake in the state in 20 years, and tens of thousands of aftershocks over the following year. They then removed seismic data created by the sequence and only looked at waves generated by other seismic activity around the world to see how their paths through the Earth changed before and after the sequence.

“One person’s signal is another person’s noise,” says Bryan. They also used general ambient noise from sources like ocean waves and traffic that are also picked up by seismometers. Then, using a technique called a receiver function, they were able to see the speed of the waves as they traveled and how it changed due to conditions in the Earth such as rock density and porosity, much in the same way we use sonar to see how acoustic waves change when they interact with objects. With all this information, they were able to construct basic maps of the Earth around the Ridgecrest fault zone before and after the sequence.

What they found was that the shallow crust, extending about 10 km into the Earth, recovered over the course of a few months. In contrast, deeper depths in the mid-crust didn’t experience immediate damage, but rather changed over the same timescale as shallow depths recovered.

“What was surprising is that the healing in the shallow crust was so quick, and then you have this complementary accumulation occurring, not at the time of the earthquake, but instead over the post-seismic phase,” says Bryan.

Balancing the energy budget

Understanding how recovery plays out at different depths is crucial for determining how energy is spent during different parts of the seismic process, which includes activities such as the release of energy as waves, the creation of new fractures, or energy being stored elastically in the surrounding areas. Altogether, this is collectively known as the energy budget, and it is a useful tool for understanding how damage accumulates and recovers over time.

What remains unclear is the timescales at which deeper depths recover, if at all. The paper presents two possible scenarios to explain why that might be: one in which the deep crust recovers over a much longer timescale than they observed, or one where it never recovers at all.

“Either of those are not what we expected,” says Frank. “And both of them are interesting.”

Further research will require more observations to build out a more detailed picture to see at what depth the change becomes more pronounced. In addition, Bryan wants to look at other areas, such as more mature faults that experience higher levels of seismic activity, to see if it changes the results.

“We’ll let you know in 1,000 years whether it’s recovered,” says Bryan.

Darcy McRose and Mehtaab Sawhney ’20, PhD ’24 named 2025 Packard Fellows for Science and Engineering

Tue, 10/14/2025 - 4:51pm

The David and Lucile Packard Foundation has announced that two MIT affiliates have been named 2025 Packard Fellows for Science and EngineeringDarcy McRose, the Thomas D. and Virginia W. Cabot Career Development Assistant Professor in the MIT Department of Civil and Environmental Engineering, has been honored, along with Mehtaab Sawhney ’20, PhD ’24, a graduate of the Department of Mathematics who is now at Columbia University. 

The honorees are among 20 junior faculty named among the nation’s most innovative early-career scientists and engineers. Each Packard Fellow receives an unrestricted research grant of $875,000 over five years to support their pursuit of pioneering research and bold new ideas.

“I’m incredibly grateful and honored to be awarded a Packard Fellowship,” says McRose. “It will allow us to continue our work exploring how small molecules control microbial communities in soils and on plant roots, with much-appreciated flexibility to follow our imagination wherever it leads us.”

McRose and her lab study secondary metabolites — small organic molecules that microbes and plants release into soils. Often known as antibiotics, these compounds do far more than fight infections; they can help unlock soil nutrients, shape microbial communities around plant roots, and influence soil fertility.

“Antibiotics made by soil microorganisms are widely used in medicine, but we know surprisingly little about what they do in nature,” explains McRose. “Just as healthy microbiomes support human health, plant microbiomes support plant health, and secondary metabolites can help to regulate the microbial community, suppressing pathogens and promoting beneficial microbes.” 

Her lab integrates techniques from genetics, chemistry, and geosciences to investigate how these molecules shape interactions between microbes and plants in soil — one of Earth’s most complex and least-understood environments. By using secondary metabolites as experimental tools, McRose aims to uncover the molecular mechanisms that govern processes like soil fertility and nutrient cycling that are foundational to sustainable agriculture and ecosystem health.

Studying antibiotics in the environments where they evolved could also yield new strategies for combating soil-borne pathogens and improving crop resilience. “Soil is a true scientific frontier,” McRose says. “Studying these environments has the potential to reveal fascinating, fundamental insights into microbial life — many of which we can’t even imagine yet.”

A native of California, McRose earned her bachelor’s and master’s degrees from Stanford University, followed by a PhD in geosciences from Princeton University. Her graduate thesis focused on how bacteria acquire trace metals from the environment. Her postdoctoral research on secondary metabolites at Caltech was supported by multiple fellowships, including the Simons Foundation Marine Microbial Ecology Postdoctoral Fellowship, the L’Oréal USA For Women in Science Fellowship, and a Division Fellowship from Biology and Biological Engineering at Caltech.

McRose joined the MIT faculty in 2022. In 2025, she was named a Sloan Foundation Research Fellow in Earth System Science and awarded the Maseeh Excellence in Teaching Award.

Past Packard Fellows have gone on to earn the highest honors, including Nobel Prizes in chemistry and physics, the Fields Medal, Alan T. Waterman Awards, Breakthrough Prizes, Kavli Prizes, and elections to the National Academies of Science, Engineering, and Medicine. Each year, the foundation reviews 100 nominations for consideration from 50 invited institutions. The Packard Fellowships Advisory Panel, a group of 12 internationally recognized scientists and engineers, evaluates the nominations and recommends 20 fellows for approval by the Packard Foundation Board of Trustees.

Engineering next-generation fertilizers

Tue, 10/14/2025 - 4:50pm

Born in Palermo, Sicily, Giorgio Rizzo spent his childhood curious about the natural world. “I have always been fascinated by nature and how plants and animals can adapt and survive in extreme environments,” he says. “Their highly tuned biochemistry, and their incredible ability to create ones of the most complex and beautiful structures in chemistry that we still can’t even achieve in our laboratories.”

As an undergraduate student, he watched as a researcher mounted a towering chromatography column layered with colorful plant chemicals in a laboratory. When the researcher switched on a UV light, the colors turned into fluorescent shades of blue, green, red and pink. “I realized in that exact moment that I wanted to be the same person, separating new unknown compounds from a rare plant with potential pharmaceutical properties,” he recalls.

These experiences set him on a path from a master’s degree in organic chemistry to his current work as a postdoc in the MIT Department of Civil and Environmental Engineering, where he focuses on developing sustainable fertilizers and studying how rare earth elements can boost plant resilience, with the aim of reducing agriculture’s environmental impact.

In the lab of MIT Professor Benedetto Marelli, Rizzo studies plant responses to environmental stressors, such as heat, drought, and prolonged UV irradiation. This includes developing new fertilizers that can be applied as seed coating to help plants grow stronger and enhance their resistance.

“We are working on new formulations of fertilizers that aim to reduce the huge environmental impact of classical practices in agriculture based on NPK inorganic fertilizers,” Rizzo explains. Although they are fundamental to crop yields, their tendency to accumulate in soil is detrimental to the soil health and microbiome living in it. In addition, producing NPK (nitrogen, phosphorus, and potassium) fertilizers is one of the most energy-consuming and polluting chemical processes in the world.

“It is mandatory to reshape our conception of fertilizers and try to rely, at least in part, on alternative products that are safer, cheaper, and more sustainable,” he says.

Recently, Rizzo was awarded a Kavanaugh Fellowship, a program that gives MIT graduate students and postdocs entrepreneurial training and resources to bring their research from the lab to the market. “This prestigious fellowship will help me build a concrete product for a company, adding more value to our research,” he says.

Rizzo hopes their work will help farmers increase their crop yields without compromising soil quality or plant health. A major barrier to adopting new fertilizers is cost, as many farmers rely heavily on each growing season’s output and cannot risk investing in products that may underperform compared to traditional NPK fertilizers. The fertilizers being developed in the Marelli Lab address this challenge by using chitin and chitosan, abundant natural materials that make them far less expensive to produce, which Rizzo hopes will encourage farmers to try them.

“Through the Kavanaugh Fellowship, I will spend this year trying to bring the technology outside the lab to impact the world and meet the need for farmers to support their prosperity,” he says.

Mentorship has been a defining part of his postdoc experience. Rizzo describes Professor Benedetto Marelli as “an incredible mentor” who values his research interests and supports him through every stage of his work. The lab spans a wide range of projects — from plant growth enhancement and precision chemical delivery to wastewater treatment, vaccine development for fish, and advanced biochemical processes. “My colleagues created a stimulant environment with different research topics,” he notes. He is also grateful for the work he does with international institutions, which has helped him build a network of researchers and academics around the world.

Rizzo enjoys the opportunity to mentor students in the lab and appreciates their curiosity and willingness to learn. “It is one of the greatest qualities you can have as a scientist because you must be driven by curiosity to discover the unexpected,” he says.

He describes MIT as a “dynamic and stimulating experience,” but also acknowledges how overwhelming it can be. “You will feel like a small fish in a big ocean,” he says. “But that is exactly what MIT is: an ocean full of opportunities and challenges that are waiting to be solved.”

Beyond his professional work, Rizzo enjoys nature and the arts. An avid reader, he balances his scientific work with literature and history. “I never read about science-related topics — I read about it a lot already for my job,” he says. “I like classic literature, novels, essays, history of nations, and biographies. Often you can find me wandering in museums’ art collections.” Classical art, Renaissance, and Pre-Raphaelites are his favorite artistic currents.

Looking ahead, Rizzo hopes to shift his professional pathway toward startups or companies focused on agrotechnical improvement. His immediate goal is to contribute to initiatives where research has a direct, tangible impact on everyday life.

“I want to pursue the option of being part of a spinout process that would enable my research to have a direct impact in everyday life and help solve agricultural issues,” he adds.

Pages