Feed aggregator

MIT Global Seed Funds catalyze research in over 20 countries

MIT Latest News - Mon, 10/20/2025 - 4:00pm

Since launching in 2008, the MIT Global Seed Funds (GSF) program has awarded roughly $30 million to more than 1,300 high-impact faculty research projects across the world, spurring consequential collaborations on topics that include swine-fever vaccines, deforestation of the Amazon, the impact of “coral mucus” on the Japanese island of Okinawa, and the creation of an AI-driven STEM-education lab within Nigeria’s oldest university.

Administered by the MIT Center for International Studies (CIS) and open to MIT faculty and principal investigators, GSF boasts a unique funding structure consisting of both a general fund for unrestricted geographical use and more than 20 different specific funds for individual universities, regions, and countries.

GSF projects often tackle critical challenges that require international solutions, culminating in patents, policy changes, and published papers in journals such as Nature and Science. Some faculty-led projects from this year include Professor Hugh Herr’s modular crutches for people with disabilities in Sierra Leone, Research Scientist Paolo Santi’s large-language models to predict energy consumption in grocery stores, and Professor Ernest Fraenkel’s development of mRNA therapies for the neurodegenerative disease amyotrophic lateral sclerosis (ALS).

GSF Assistant Director Justin Leahey, who is managing director of the MIT-Germany and MIT-Switzerland programs, says that GSF has expanded exponentially over the years, including most recently into the Czech Republic, Norway, Slovakia, and — starting in fall 2025 — Hungary. This year there were a grand total of roughly 300 research proposals submitted for consideration, with many of the accepted proposals including the active participation of students at both the graduate and undergraduate level.

Central to GSF’s work is “reciprocal exchange” — the concept of collaborators in and out of MIT sharing their work and exchanging ideas in an egalitarian way, rather than bringing a one-sided approach to different research challenges. Frequent collaborator Raffaella Gozzelino, a neurology researcher and principal investigator at NOVA Medical School in Portugal who works closely with Jacquin Niles, an MIT professor of biological engineering, says that research is more impactful “when specialized knowledge integrates local realities and reveals potential solutions to national challenges,” and views the spirit of reciprocal exchange as something that revolves around “sharing knowledge and co-creating solutions that empower one another and build bridges across borders.”

For Cindy Xie ’24, MCP ’25, her master’s thesis emerged from the first-ever GSF-supported research internship in Cape Verde, where she worked with Niles and Gozzelino to explore the impact of climate change on anemia in the country of 500,000 people, focusing specifically on its largest island of Santiago. Xie says that she was struck by the intertwined intersectional nature of the issues of nutrition, climate, and infection in Santiago, home to the nation’s capital city of Praia. For example, Xie and Gozzelino’s team found that respondents perceived a rise in costs of fresh produce over time, exacerbated by drought and unpredictable agricultural conditions, which in turn impacted existing nutritional deficiencies and increased residents’ susceptibility to mosquito-borne diseases.

“Though this multidisciplinary research lens is challenging in terms of actual project implementation, it was meaningful in that it generated insights and connections across fields that allow our research to be better contextualized within the experiences of the communities that it impacts,” Xie says.

Gozzelino says that it has been meaningful to witness how scientific research can transcend academic boundaries and generate real impact. She says that, by examining the effects of climate change on infectious diseases and nutrition in Cape Verde, the team will be able to build a framework that can directly inform public policy.

“Contributing to a project that underscores the importance of integrating scientific knowledge into decision-making will safeguard vulnerable populations and make them feel included in the society they belong,” Gozzelino says. “This collaboration has revealed the enormous potential of international partnerships to strengthen local research capacity and address global challenges.”

During her time in Cape Verde working with Xie and Gozzelino, Amulya Aluru ’23, MEng ’24 got to meet with 20 local officials and connect with new people in a wide range of roles across the country, helping her “recognize the power of interpersonal relationships and collaboration” in public health research. She says that the structure of the GSF grant gave her the unique experience of having mentors and coworkers in three different countries, spanning Cape Verde, the United States, and Portugal.

Aluru says that this kind of cross-pollination “enabled me to strengthen my research with different perspectives and challenged me to approach my work in a way that I’d never done before, with a more global mindset.”

Xie similarly expresses her deep appreciation for the long-term relationships she has built through the project and the linkages between Santiago and Boston, which itself is home to one of the world’s largest Cape Verdean diasporas. “As a student, this was a valuable experience to inform the approaches to collaboration that I would like to implement in my own future work,” Xie says.

More broadly, Gozzelino sees GSF grants like the Cape Verde one as being not simply a vehicle for financial support, but “a catalyst for turning partnerships into long-term impactful collaborations, demonstrating how global networks can aid the development of human capital.”

GSF’s long history of reaching across departments and borders has led to multiple meaningful academic collaborations that have since come to span continents — and decades. In 2015, Professor Jörn Dunkel — an applied mathematician at MIT — kicked off work on a data-sharing repository for bacterial biofilms with the interdisciplinary German microbiologist Knut Drescher, then a professor of biophysics at Philipps-Universität Marburg in Germany. Dunkel and Drescher have since co-authored more than 15 papers together in publications like Nature Physics and Science Advances alongside their teams of graduate students and postdocs, even with Drescher having moved locations and crossed country lines to Switzerland as a faculty member at the University of Basel’s Biozentrum Center for Molecular Life Sciences.

“Our collaboration often creates great synergy by combining my team’s experiments with the theory from Jörn’s team,” says Drescher. “It is a great joy to see his perspective on the experimental systems we are working on. He is able to really understand and engage with experimental biological data, identifying patterns in seemingly distant biological systems.”

In explaining the CIS initiative’s success, Leahey points to the synergistic, academically eclectic, cross-disciplinary nature of the program. “[GSF] is a research fund that doesn’t ‘fund research’ in the conventional sense,” he says. “It seeds early-stage collaboration and lets people explore.”

The MIT Global Seed Funds applications are now open, with a deadline of Dec. 16.

Alan Whitney, MIT Haystack Observatory radio astronomer who pioneered very long baseline interferometry, dies at 81

MIT Latest News - Mon, 10/20/2025 - 1:20pm

Alan Robert Whitney ’66, SM ’67, PhD ’74, a longtime research scientist at the MIT Haystack Observatory who also served its associate director and interim director, died on Sept. 28 at age 81.

Whitney was a key contributor to the accomplishments and reputation of Haystack Observatory, having led the development of innovative technologies to advance the powerful radio science technique of very long baseline interferometry (VLBI). He ascended to the rank of MIT principal research scientist, served for many years as associate director of the observatory, and in 2007–08 took the reins as interim director. In 2011, he was awarded an MIT Excellence award.

From an early age, Whitney displayed extraordinary talent. Raised in Wyoming, as a high schooler he won the state science fair in 1962 by building a satellite telemetry receiver, which he designed and built from transistors and other discrete components in a barn on his family’s dairy farm. He enrolled at MIT and completed a five-year master’s degree via a cooperative internship program with Bell Laboratories, subsequently earning his PhD in electrical engineering.

Haystack Director Phil Erickson says, “Alan’s personality and enthusiasm were infectious, and his work represented the best ideals of the Haystack and MIT research enterprise — innovative, curious, and exploring the frontiers of basic and applied science and technology.”

In the late 1960s, as part of his PhD work, he was heavily involved in the pioneering development of VLBI, an extraordinary technique that yielded direct measurements of continental drift and information on distant radio sources at unprecedented angular resolution. A landmark paper led by Whitney demonstrated the presence of apparent superluminal (faster than light) motion of radio sources, which was explained as highly relativistic motion aligned toward the Earth. He spent the rest of his long and productive career at Haystack, pushing forward VLBI technology to ever-greater heights and ever-more impactful scientific capabilities.

“Alan was a technology pillar, a stalwart builder and worldwide ambassador of Haystack, and a leading figure of the VLBI geodetic community who inspired generations of scientists and engineers,” says Pedro Elosegui, leader of the Haystack geodesy group. “He contributed fundamentally to the vision and design of the VLBI Geodetic Observing System, outlining a path to a next-generation VLBI system with unprecedented new capabilities to address emerging space geodesy science needs such as global sea-level rise.”

The early days of VLBI demanded heroic and grueling efforts, traveling the world with exotic devices in hand-carried luggage, mounting and dismounting thousands of magnetic tapes every couple of minutes for hours on end, troubleshooting complex and sensitive instrumentation, and writing highly specialized software for the mainframe computers of the day. Whitney was fully engaged on all these fronts. By the early 1980s, the Mark III recording and correlation systems, whose development was led by Whitney, were established as the state of the art in VLBI technology, and a standard around which the global VLBI community coalesced.

Whitney later led the transition to VLBI disk-based recording. Specialized and robust Mark V systems optimized for shipping logistics and handling were transferred to industry for commercialization, leading once again to widespread global adoption of Haystack-developed VLBI technology. Consistently across all these developments, Whitney identified and exploited the most relevant and practical emerging technologies for the Haystack VLBI mission in hardware, software, and computing infrastructure.

In the latter part of his career, Whitney continued to innovate, pushing the technical boundaries of VLBI. A key advance was the Mark 6 (Mk6) recording system, capable of yet faster recording, higher sensitivity, and more robustness. The Mk6 recorders’ essential capability allowed the creation of the Event Horizon Telescope, which famously yielded the first image of the shadow of a black hole. Mk6 recorders are now used to routinely record data roughly 100,000 times faster than the computer tapes used at the start of his career.

As a senior technical and scientific leader, Whitney provided broad leadership and consultation to Haystack, and worked on a number of projects outside of the VLBI world. He served as interim Haystack director from January 2007 until a permanent director was appointed in September 2008. He also engaged with the development project for the international Murchison Widefield Array (MWA) in Australia, focused on frontier research studying early universe development. Whitney assumed the role of MWA project director from 2008 until groups in Australia took over the construction phase of the project a few years later. Until his full retirement in 2012, Whitney continued to provide invaluable technical insights and support at Haystack, and was a trusted and wise counsel to the Haystack Director’s Office. In 2020, Whitney was a co-recipient of the 2020 Breakthrough Prize in Fundamental Physics awarded to the Event Horizon Telescope Collaboration.

Alan Whitney was a top-notch technologist with a broad perspective that allowed him to guide Haystack to decades of influential leadership in the development and refinement of the VLBI technique. His dedication at MIT to the observatory, its people, and its mission were a source of inspiration to many at Haystack and well beyond. He was widely admired for the clarity of his thought, the sharpness of his intellect, and his genial and friendly nature. His numerous local, national, and global colleagues will feel his absence.

Agentic AI’s OODA Loop Problem

Schneier on Security - Mon, 10/20/2025 - 7:00am

The OODA loop—for observe, orient, decide, act—is a framework to understand decision-making in adversarial situations. We apply the same framework to artificial intelligence agents, who have to make their decisions with untrustworthy observations and orientation. To solve this problem, we need new systems of input, processing, and output integrity.

Many decades ago, U.S. Air Force Colonel John Boyd introduced the concept of the “OODA loop,” for Observe, Orient, Decide, and Act. These are the four steps of real-time continuous decision-making. Boyd developed it for fighter pilots, but it’s long been applied in artificial intelligence (AI) and robotics. An AI agent, like a pilot, executes the loop over and over, accomplishing its goals iteratively within an ever-changing environment. This is Anthropic’s definition: “Agents are models using tools in a loop.”...

DOE climate report colored by past views of its authors, critics say

ClimateWire News - Mon, 10/20/2025 - 6:05am
A review by POLITICO's E&E News found that most of the authors have spoken out against the endangerment finding, once called the "holy grail" of climate science.

Why Trump and Democrats are wrong about rising electricity prices

ClimateWire News - Mon, 10/20/2025 - 6:04am
New research indicates that political arguments over the cause of higher rates are off target.

Offshore vessel dispute threatens to slow Empire Wind

ClimateWire News - Mon, 10/20/2025 - 6:03am
A canceled contract for a nearly completed installation vessel could impede the offshore wind project near New York.

Brazil to push for global coalition of countries with carbon fees

ClimateWire News - Mon, 10/20/2025 - 6:02am
South America's largest nation named a respected figure to run its carbon market as it prepares to host international climate talks in November.

Greens pressure Maryland governor to bolster clean heat rules

ClimateWire News - Mon, 10/20/2025 - 6:01am
A new coalition is spending $200,000 on ads in support of stronger regulations for furnaces, boilers and heating fuels.

EU nations to push for delay to controversial new carbon market

ClimateWire News - Mon, 10/20/2025 - 6:00am
Cyprus and a group of predominantly central and eastern EU member states will request a three-year delay.

Majority of carbon credits from tarnished project deemed bogus

ClimateWire News - Mon, 10/20/2025 - 6:00am
A two-year probe by Verra found that about two-thirds of the stated climate benefits were fictitious for a massive forest-protection project in Zimbabwe.

India draft plan reveals $21T net-zero investment need

ClimateWire News - Mon, 10/20/2025 - 5:59am
The new plan shows India will seek to achieve climate and economic development goals simultaneously in its push to reach net-zero emissions by 2070.

UN says poor nations will get hotter faster than rich ones

ClimateWire News - Mon, 10/20/2025 - 5:58am
About 80 percent of the 1.1 billion people around the world living in poverty face harsher conditions because of at least one of four “climate hazards” — high heat, drought, floods and air pollution.

The carbon hoofprint of cities is shaped by geography and production in the livestock supply chain

Nature Climate Change - Mon, 10/20/2025 - 12:00am

Nature Climate Change, Published online: 20 October 2025; doi:10.1038/s41558-025-02450-7

Meat products represent a large share of the carbon footprints of cities, which are dependent on the characteristics of supply regions. With spatially explicit data, researchers show how the so-called carbon hoofprint varies between cities due to the different carbon intensities of producing regions.

Identifying critical intervention points for the prevention of cascading climate impacts

Nature Climate Change - Mon, 10/20/2025 - 12:00am

Nature Climate Change, Published online: 20 October 2025; doi:10.1038/s41558-025-02456-1

Bridging traditional disciplinary silos, a study has mapped cascading climate risks to the European Union through stakeholder-co-produced impact chains and network analysis. It provides country-specific risk profiles by identifying critical intervention points — such as water, livelihoods or violent conflict — to support policy coherence in addressing interconnected vulnerabilities and guiding targeted adaptation.

Friday Squid Blogging: Squid Inks Philippines Fisherman

Schneier on Security - Fri, 10/17/2025 - 5:02pm

Good video.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Blog moderation policy.

School of Engineering welcomes new faculty in 2024-25

MIT Latest News - Fri, 10/17/2025 - 3:55pm

The MIT School of Engineering welcomes new faculty members across six of its academic units. This new cohort of faculty members, who have recently started their roles at MIT, conduct research across a diverse range of disciplines.

“We are thrilled to welcome these accomplished scholars to the School of Engineering,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor in the Department of Mechanical Engineering. “Each brings unique expertise across a wide range of fields and is advancing knowledge with real-world impact. They all share a deep commitment to research excellence and a passion for teaching and mentorship.”

Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) and the Institute for Data, Systems, and Society (IDSS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing.

The new engineering faculty include:

Masha Folk joined the Department of Aeronautics and Astronautics as an assistant professor in July 2024 and is currently the Charles Stark Draper Career Development Professor. Her research focuses on sustainable aerospace technology driven by a deep desire to accelerate carbon-neutral aviation. She previously worked as an aerodynamics specialist for Rolls-Royce. Folk received her BS in aerospace engineering from Ohio State University, her MS in aerospace engineering from Purdue University, and her PhD in energy, fluids, and turbomachinery from the University of Cambridge.

Sophia Henneberg joined the Department of Nuclear Science and Engineering (NSE) as an assistant professor in September. Her research focuses on developing, utilizing, and extending optimization tools to identify new, promising stellarator designs, which are a promising path toward fusion energy. Previously, she was the principal investigator of EUROfusion’s Stellarator Optimization Theory, Simulation, Validation, and Verification group. Henneberg received a BS in physics at the Goethe-Universität, an MA in physics at the University of Wisconsin at Madison, and a PhD in physics at the University of York.

Omar Khattab joined the Department of Electrical Engineering and Computer Science as an assistant professor in July. He is also affiliated with the Computer Science and Artificial Intelligence Laboratory (CSAIL). His research develops new algorithms and abstractions for declarative AI programming and for composing retrieval and reasoning. Khattab previously worked as a research scientist at Databricks. He received a BS in computer science from Carnegie Mellon University and a PhD in computer science from Stanford University.

Tania Lopez-Silva joined the Department of Materials Science and Engineering as an assistant professor in July. Her research focuses on supramolecular hydrogels — soft materials made from self-assembling molecules, primarily peptides. Previously, she served as a postdoc at the National Cancer Institute. Lopez-Silva earned her BS in chemistry from Tecnológico de Monterrey and her MA and PhD in chemistry from Rice University.

Ethan Peterson ’13 joined the Department of Nuclear Science and Engineering as an assistant professor in July 2024. His research focuses on improving radiation transport and transmutation methods for the design of fusion technologies, as well as whole-facility modeling for fusion power plants. Previously, he worked as a research scientist at MIT’s Plasma Science and Fusion Center. Peterson received his BS in nuclear engineering and physics from MIT and his PhD in plasma physics from the University of Wisconsin at Madison.

Dean Price joined the Department of Nuclear Science and Engineering as the Atlantic Richfield Career Development Professor in Energy Studies and an assistant professor in September. His work focuses on the simulation and control of advanced reactors, with expertise in uncertainty quantification, scientific machine learning, and artificial intelligence for nuclear applications. Previously, he was the Russell L. Heath Distinguished Postdoctoral Fellow at Idaho National Laboratory. He earned his BS in nuclear engineering from the University of Illinois and his PhD in nuclear engineering from the University of Michigan.

Daniel Varon joined the Department of Aeronautics and Astronautics as the Boeing Assistant Professor, holding an MIT Schwarzman College of Computing shared position with IDSS, in July. Varon’s research focuses on using satellite observations of atmospheric composition to better understand human impacts on the environment and identify opportunities to reduce them. Previously, he held a visiting postdoctoral fellowship at the Princeton School of Public and International Affairs. Varon earned a BS in physics and a BA in English literature from McGill University, and an MS in applied mathematics and PhD in atmospheric chemistry from Harvard University.

Raphael Zufferey joined the Department of Mechanical Engineering as an assistant professor in January. He studies bioinspired methods and unconventional designs to solve seamless aerial and aquatic locomotion for applications in ocean sciences. Zufferey previously worked as a Marie Curie postdoc at the École Polytechnique Fédérale de Lausanne (EPFL). He received his BA in micro-engineering and MS in robotics from EPFL and a PhD in robotics and aeronautics from Imperial College London.

The School of Engineering is also welcoming a number of faculty in the Department of EECS and the IDSS who hold shared positions with the MIT Schwarzman College of Computing and other departments. These include: Bailey Flanigan, Brian Hedden, Yunha Hwang, Benjamin Lindquist, Paris Smaragdis, Pu “Paul" Liang, Mariana Popescu, and Daniel Varon. For more information about these faculty members, read the Schwarzman College of Computing’s recent article.

Additionally, the School of Engineering has adopted the shared faculty search model to hire its first shared faculty member: Mark Rau. For more information, read the School of Humanities, Arts, and Social Sciences recent article.

MIT Schwarzman College of Computing welcomes 11 new faculty for 2025

MIT Latest News - Fri, 10/17/2025 - 3:45pm

The MIT Schwarzman College of Computing welcomes 11 new faculty members in core computing and shared positions to the MIT community. They bring varied backgrounds and expertise spanning sustainable design, satellite remote sensing, decision theory, and the development of new algorithms for declarative artificial intelligence programming, among others.

“I warmly welcome this talented group of new faculty members. Their work lies at the forefront of computing and its broader impact in the world,” says Dan Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.

College faculty include those with appointments in the Department of Electrical Engineering and Computer Science (EECS) or in the Institute for Data, Systems, and Society (IDSS), which report into both the MIT Schwarzman College of Computing and the School of Engineering. There are also several new faculty members in shared positions between the college and other MIT departments and sections, including Political Science, Linguistics and Philosophy, History, and Architecture.

“Thanks to another successful year of collaborative searches, we have hired six additional faculty in shared positions, bringing the total to 20,” says Huttenlocher.

The new shared faculty include:

Bailey Flanigan is an assistant professor in the Department of Political Science, holding an MIT Schwarzman College of Computing shared position with EECS. Her research combines tools from social choice theory, game theory, algorithms, statistics, and survey methods to advance political methodology and strengthen democratic participation. She is interested in sampling algorithms, opinion measurement, and the design of democratic innovations like deliberative minipublics and participatory budgeting. Flanigan was a postdoc at Harvard University’s Data Science Initiative, and she earned her PhD in computer science from Carnegie Mellon University.

Brian Hedden PhD ’12 is a professor in the Department of Linguistics and Philosophy, holding an MIT Schwarzman College of Computing shared position with EECS. His research focuses on how we ought to form beliefs and make decisions. His works span epistemology, decision theory, and ethics, including ethics of AI. He is the author of “Reasons without Persons: Rationality, Identity, and Time” (Oxford University Press, 2015) and articles on topics such as collective action problems, legal standards of proof, algorithmic fairness, and political polarization. Prior to joining MIT, he was a faculty member at the Australian National University and the University of Sydney, and a junior research fellow at Oxford University. He received his BA from Princeton University and his PhD from MIT, both in philosophy.

Yunha Hwang is an assistant professor in the Department of Biology, holding an MIT Schwarzman College of Computing shared position with EECS. She is also a member of the Laboratory for Information and Decision Systems. Her research interests span machine learning for sustainable biomanufacturing, microbial evolution, and open science. She serves as the co-founder and chief scientist at Tatta Bio, a scientific nonprofit dedicated to advancing genomic AI for biological discovery. She holds a BS in computer science from Stanford University and a PhD in biology from Harvard University.

Ben Lindquist is an assistant professor in the History Section, holding an MIT Schwarzman College of Computing shared position with EECS. Through a historical lens, his work observes the ways that computing has circulated with ideas of religion, emotion, and divergent thinking. His book, “The Feeling Machine” (University of Chicago Press, forthcoming), follows the history of synthetic speech to examine how emotion became a subject of computer science. He was a postdoc in the Science in Human Culture Program at Northwestern University and earned his PhD in history from Princeton University.

Mariana Popescu is an assistant professor in the Department of Architecture, holding an MIT Schwarzman College of Computing shared position with EECS. She is also a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). A computational architect and structural designer, Popescu has a strong interest and experience in innovative ways of approaching the fabrication process and use of materials in construction. Her area of expertise is computational and parametric design, with a focus on digital fabrication and sustainable design. Popescu earned her doctorate at ETH Zurich.

Paris Smaragdis SM ’97, PhD ’01 is a professor in the Music and Theater Arts Section, holding an MIT Schwarzman College of Computing shared position with EECS. His research focus lies at the intersection of signal processing and machine learning, especially as it relates to sound and music. Prior to coming to MIT, he worked as a research scientist at Mitsubishi Electric Research Labs, a senior research scientist at Adobe Research, and an Amazon Scholar with Amazon’s AWS. He spent 15 years as a professor at the University of Illinois Urbana Champaign in the Computer Science Department, where he spearheaded the design of the CS+Music program, and served as an associate director of the School of Computer and Data Science. He holds a BMus from Berklee College of Music and earned his PhD in perceptual computing from MIT.

Daniel Varon is an assistant professor in the Department of Aeronautics and Astronautics, holding an MIT Schwarzman College of Computing shared position with IDSS. His work focuses on using satellite observations of atmospheric composition to better understand human impacts on the environment and identify opportunities to reduce them. An atmospheric scientist, Varon is particularly interested in greenhouse gasses, air pollution, and satellite remote sensing. He holds an MS in applied mathematics and a PhD in atmospheric chemistry, both from Harvard University.

In addition, the School of Engineering has adopted the shared faculty search model to hire its first shared faculty member:

Mark Rau is an assistant professor in the Music and Theater Arts Section, holding a School of Engineering shared position with EECS. He is involved in developing graduate programming focused on music technology. He has an interest in musical acoustics, vibration and acoustic measurement, audio signal processing, and physical modeling synthesis. His work focuses on musical instruments and creative audio effects. He holds an MA in music, science, and technology from Stanford, as well as a BS in physics and BMus in jazz from McGill University. He earned his PhD at Stanford’s Center for Computer Research in Music and Acoustics.

The new core faculty are:

Mitchell Gordon is an assistant professor in EECS. He is also a member of CSAIL. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. His work has won awards at conferences in human-computer interaction and artificial intelligence, including a best paper award at CHI and an Oral at NeurIPS. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.

Omar Khattab is an assistant professor in EECS. He is also a member of CSAIL. His work focuses on natural language processing, information retrieval, and AI systems. His research includes developing new algorithms and abstractions for declarative AI programming and for composing retrieval and reasoning. He received his BS from Carnegie Mellon University and his PhD from Stanford University, both in computer science.

Rachit Nigam will join EECS as an assistant professor in January 2026. He will also be a member of CSAIL and the Microsystems Technology Laboratories. He works on programming languages and computer architecture to address the design, verification, and usability challenges of specialized hardware. He was previously a visiting scholar at MIT. Nigam earned an MS and PhD in computer science from Cornell University.

Lincoln Laboratory and Haystack Observatory team up to unveil hidden parts of the galaxy

MIT Latest News - Fri, 10/17/2025 - 2:50pm

For centuries, humans have sought to study the stars and celestial bodies, whether through observations made by naked eye or by telescopes on the ground and in space that can view the universe across nearly the entire electromagnetic spectrum. Each view unlocks new information about the denizens of space — X-ray pulsars, gamma-ray bursts — but one is still missing: the low-frequency radio sky.

Researchers from MIT Lincoln Laboratory, the MIT Haystack Observatory, and Lowell Observatory are working on a NASA-funded concept study called the Great Observatory for Long Wavelengths, or GO-LoW, that outlines a method to view the universe at as-of-yet unseen low frequencies using a constellation of thousands of small satellites. The wavelengths of these frequencies are 15 meters to several kilometers in length, which means they require a very big telescope in order to see clearly.

"GO-LoW will be a new kind of telescope, made up of many thousands of spacecraft that work together semi-autonomously, with limited input from Earth," says Mary Knapp, the principal investigator for GO-LoW at the MIT Haystack Observatory. "GO-LoW will allow humans to see the universe in a new light, opening up one of the very last frontiers in the electromagnetic spectrum."

The difficulty in viewing the low-frequency radio sky comes from Earth's ionosphere, a layer of the atmosphere that contains charged particles that prevent very low-frequency radio waves from passing through. Therefore, a space-based instrument is required to observe these wavelengths. Another challenge is that long-wavelength observations require correspondingly large telescopes, which would need to be many kilometers in length if built using traditional dish antenna designs. GO-LoW will use interferometry — a technique that combines signals from many spatially separated receivers that, when put together, will function as one large telescope — to obtain highly detailed data from exoplanets and other sources in space. A similar technique was used to make the first image of a black hole and, more recently, an image of the first known extrasolar radiation belts.

Melodie Kao, a member of the team from Lowell Observatory, says the data could reveal details about an exoplanet's makeup and potential for life. "[The radio wave aurora around an exoplanet] carries important information, such as whether or not the planet has a magnetic field, how strong it is, how fast the planet is rotating, and even hints about what's inside," she says. "Studying exoplanet radio aurorae and the magnetic fields that they trace is an important piece of the habitability puzzle, and it's a key science goal for GO-LoW."

Several recent trends and technology developments will make GO-LoW possible in the near future, such as the declining cost of mass-produced small satellites, the rise of mega-constellations, and the return of large, high-capacity launch vehicles like NASA's Space Launch System. Go-LoW would be the first mega-constellation that uses interferometry for scientific purposes.

The GO-LoW constellation will be built through several successive launches, each containing thousands of spacecraft. Once they reach low-Earth orbit, the spacecraft will be refueled before journeying on to their final destination — an Earth-sun Lagrange point where they will then be deployed. Lagrange points are regions in space where the gravitational forces of two large celestial bodies (like the sun and Earth) are in equilibrium, such that a spacecraft requires minimal fuel to maintain its position relative to the two larger bodies.  At this long distance from Earth (1 astronomical unit, or approximately 93 million miles), there will also be much less radio-frequency interference that would otherwise obscure GO-LoW’s sensitive measurements.

"GO-LoW will have a hierarchical architecture consisting of thousands of small listener nodes and a smaller number of larger communication and computation nodes (CCNs)," says Kat Kononov, a team member from Lincoln Laboratory's Applied Space Systems Group, who has been working with MIT Haystack staff since 2020, with Knapp serving as her mentor during graduate school. A node refers to an individual small satellite within the constellation. "The listener nodes are small, relatively simple 3U CubeSats — about the size of a loaf of bread — that collect data with their low-frequency antennas, store it in memory, and periodically send it to their communication and computation node via a radio link." In comparison, the CCNs are about the size of a mini-fridge.

The CCN will keep track of the positions of the listener nodes in their neighborhood; collect and reduce the data from their respective listener nodes (around 100 of them); and then transmit that data back to Earth, where more intensive data processing can be performed.

At full strength, with approximately 100,000 listener nodes, the GO-LoW constellation should be able to see exoplanets with magnetic fields in the solar neighborhood — within 5 to 10 parsecs — many for the very first time.

The GO-LoW research team recently published the results of their findings from Phase I of the study, which identified a type of advanced antenna called a vector sensor as the best type for this application. In 2024, Lincoln Laboratory designed a compact deployable version of the sensor suitable for use in space.

The team is now working on Phase II of the program, which is to build a multi-agent simulation of constellation operations.

"What we learned during the Phase I study is that the hard part for GO-LoW is not any specific technology … the hard part is the system: the system engineering and the autonomy to run the system," says Knapp. "So, how do we build this constellation such that it's a tractable problem? That's what we’re exploring in this next part of the study."

GO-LoW is one of many civil space programs at Lincoln Laboratory that aim to harness advanced technologies originally developed for national security to enable new space missions that support science and society. "By adapting these capabilities to serve new stakeholders, the laboratory helps open novel frontiers of discovery while building resilient, cost-effective systems that benefit the nation and the world," says Laura Kennedy, who is the deputy lead of Lincoln Laboratory's Civil Space Systems and Technology Office.

"Like landing on the moon in 1969, or launching Hubble in the 1990s, GO-LoW is envisioned to let us see something we've never seen before and generate scientific breakthroughs," says Kononov.

Go-LoW is a collaboration between Lincoln Laboratory, Haystack Observatory, and Lowell University, as well as Lenny Paritsky from LeafLabs and Jacob Turner from Cornell University.

New software designs eco-friendly clothing that can reassemble into new items

MIT Latest News - Fri, 10/17/2025 - 2:30pm

It’s hard to keep up with the ever-changing trends of the fashion world. What’s “in” one minute is often out of style the next season, potentially causing you to re-evaluate your wardrobe.

Staying current with the latest fashion styles can be wasteful and expensive, though. Roughly 92 million tons of textile waste are produced annually, including the clothes we discard when they go out of style or no longer fit. But what if we could simply reassemble our clothes into whatever outfits we wanted, adapting to trends and the ways our bodies change?

A team of researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Adobe are attempting to bring eco-friendly, versatile garments to life. Their new “Refashion” software system breaks down fashion design into modules — essentially, smaller building blocks — by allowing users to draw, plan, and visualize each element of a clothing item. The tool turns fashion ideas into a blueprint that outlines how to assemble each component into reconfigurable clothing, such as a pair of pants that can be transformed into a dress.

With Refashion, users simply draw shapes and place them together to develop an outline for adaptable fashion pieces. It’s a visual diagram that shows how to cut garments, providing a straightforward way to design things like a shirt with an attachable hood for rainy days. One could also create a skirt that can then be reconfigured into a dress for a formal dinner, or maternity wear that fits during different stages of pregnancy.

“We wanted to create garments that consider reuse from the start,” says Rebecca Lin, MIT Department of Electrical Engineering and Computer Science (EECS) PhD student, CSAIL and Media Lab researcher, and lead author on a paper presenting the project. “Most clothes you buy today are static, and are discarded when you no longer want them. Refashion instead makes the most of our garments by helping us design items that can be easily resized, repaired, or restyled into different outfits.”

Modules à la mode

The researchers conducted a preliminary user study where both designers and novices explored Refashion and were able to create garment prototypes. Participants assembled pieces such as an asymmetric top that could be extended into a jumpsuit, or remade into a formal dress, often within 30 minutes. These results suggest that Refashion has the potential to make prototyping garments more approachable and efficient. But what features might contribute to this ease of use?

Its interface first presents a simple grid in its “Pattern Editor” mode, where users can connect dots to outline the boundaries of a clothing item. It’s essentially drawing rectangular panels and specifying how different modules will connect to each other.

Users can customize the shape of each component, create a straight design for garments (which might be useful for less form-fitting items, like chinos) or perhaps tinkering with one of Refashion’s templates. A user can edit pre-designed blueprints for things like a T-shirt, fitted blouse, or trousers.

Another, more creative route is to change the design of individual modules. One can choose the “pleat” feature to fold a garment over itself, similar to an accordion, for starters. It’s a useful way to design something like a maxi dress. The “gather” option adds an artsy flourish, where a garment is crumpled together to create puffy skirts or sleeves. A user might even go with the “dart” module, which removes a triangular piece from the fabric. It allows for shaping a garment at the waist (perhaps for a pencil skirt) or tailor to the upper body (fitted shirts, for instance).

While it might seem that each of these components needs to be sewn together, Refashion enables users to connect garments through more flexible, efficient means. Edges can be seamed together via double-sided connectors such as metal snaps (like the buttons used to close a denim jacket) or Velcro dots. A user could also fasten them in pins called brads, which have a pointed side that they stick through a hole and split into two “legs” to attach to another surface; it’s a handy way to secure, say, a picture on a poster board. Both connective methods make it easy to reconfigure modules, should they be damaged or a “fit check” calls for a new look.

As a user designs their clothing piece, the system automatically creates a simplified diagram of how it can be assembled. The pattern is divided into numbered blocks, which is dragged onto different parts of a 2D mannequin to specify the position of each component. The user can then simulate how their sustainable clothing will look on 3D models of a range of body types (one can also upload a model).

Finally, a digital blueprint for sustainable clothing can extend, shorten, or combine with other pieces. Thanks to Refashion, a new piece could be emblematic of a potential shift in fashion: Instead of buying new clothes every time we want a new outfit, we can simply reconfigure existing ones. Yesterday’s scarf could be today’s hat, and today’s T-shirt could be tomorrow’s jacket.

“Rebecca’s work is at an exciting intersection between computation and art, craft, and design,” says MIT EECS professor and CSAIL principal investigator Erik Demaine, who advises Lin. “I’m excited to see how Refashion can make custom fashion design accessible to the wearer, while also making clothes more reusable and sustainable.”

Constant change

While Refashion presents a greener vision for the future of fashion, the researchers note that they’re actively improving the system. They intend to revise the interface to support more durable items, stepping beyond standard prototyping fabrics. Refashion may soon support other modules, like curved panels, as well. The CSAIL-Adobe team may also evaluate whether their system can use as few materials as possible to minimize waste, and whether it can help “remix” old store-bought outfits.

Lin also plans to develop new computational tools that help designers create unique, personalized outfits using colors and textures. She’s exploring how to design clothing by patchwork — essentially, cutting out small pieces from materials like decorative fabrics, recycled denim, and crochet blocks and assembling them into a larger item.

“This is a great example of how computer-aided design can also be key in supporting more sustainable practices in the fashion industry,” says Adrien Bousseau, a senior researcher at Inria Centre at Université Côte d'Azur who wasn’t involved in the paper. “By promoting garment alteration from the ground up, they developed a novel design interface and accompanying optimization algorithm that helps designers create garments that can undergo a longer lifetime through reconfiguration. While sustainability often imposes additional constraints on industrial production, I am confident that research like the one by Lin and her colleagues will empower designers in innovating despite these constraints.”

Lin wrote the paper with Adobe Research scientists Michal Lukáč and Mackenzie Leake, who is the paper’s senior author and a former CSAIL postdoc. Their work was supported, in part, by the MIT Morningside Academy for Design, an MIT MAKE Design-2-Making Mini-Grant, and the Natural Sciences and Engineering Research Council of Canada. The researchers presented their work recently at the ACM Symposium on User Interface Software and Technology.

A Surprising Amount of Satellite Traffic Is Unencrypted

Schneier on Security - Fri, 10/17/2025 - 7:03am

Here’s the summary:

We pointed a commercial-off-the-shelf satellite dish at the sky and carried out the most comprehensive public study to date of geostationary satellite communication. A shockingly large amount of sensitive traffic is being broadcast unencrypted, including critical infrastructure, internal corporate and government communications, private citizens’ voice calls and SMS, and consumer Internet traffic from in-flight wifi and mobile networks. This data can be passively observed by anyone with a few hundred dollars of consumer-grade hardware. There are thousands of geostationary satellite transponders globally, and data from a single transponder may be visible from an area as large as 40% of the surface of the earth...

Pages